Approximate factorization of the discrete Navier--Stokes equations in Cartesian and cylindrical coordinates
Matematičeskoe modelirovanie, Tome 25 (2013) no. 12, pp. 110-136.

Voir la notice de l'article provenant de la source Math-Net.Ru

A new pseudospectral technique for integrating incompressible Navier–Stokes equations with one nonperiodic boundary in Cartesian or cylindrical coordinate system is presented. Algorithm constructed makes use of Chebyshev collocation technique in nonperiodic direction. Special attention is paid to the approximate factorization of the discrete Navier–Stokes equations in cylindrical geometry leading to highly fast and robust numerical procedure providing spectral accuracy. New approach is an efficient tool for further investigation of turbulent shear flows, for physical hypotheses and alternative algorithms testing. Classical problems of incompressible fluid flows in an infinite plane channel and annuli at transitional Reynolds numbers are taken as model ones.
Keywords: spectral methods, Navier–Stokes equations, turbulent flow simulation.
@article{MM_2013_25_12_a8,
     author = {V. G. Priymak},
     title = {Approximate factorization of the discrete {Navier--Stokes} equations in {Cartesian} and cylindrical coordinates},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {110--136},
     publisher = {mathdoc},
     volume = {25},
     number = {12},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2013_25_12_a8/}
}
TY  - JOUR
AU  - V. G. Priymak
TI  - Approximate factorization of the discrete Navier--Stokes equations in Cartesian and cylindrical coordinates
JO  - Matematičeskoe modelirovanie
PY  - 2013
SP  - 110
EP  - 136
VL  - 25
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2013_25_12_a8/
LA  - ru
ID  - MM_2013_25_12_a8
ER  - 
%0 Journal Article
%A V. G. Priymak
%T Approximate factorization of the discrete Navier--Stokes equations in Cartesian and cylindrical coordinates
%J Matematičeskoe modelirovanie
%D 2013
%P 110-136
%V 25
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2013_25_12_a8/
%G ru
%F MM_2013_25_12_a8
V. G. Priymak. Approximate factorization of the discrete Navier--Stokes equations in Cartesian and cylindrical coordinates. Matematičeskoe modelirovanie, Tome 25 (2013) no. 12, pp. 110-136. http://geodesic.mathdoc.fr/item/MM_2013_25_12_a8/

[1] Kim J., Moin P., “Application of a fractional-step method to incompressible Navier–Stokes equations”, J. Comput. Phys., 59 (1985), 308–323 | DOI | Zbl

[2] Karniadakis G. E., Israeli S. A., Orszag S. A., “High order splitting methods for the incompressible Navier–Stokes equations”, J. Comput. Phys., 97 (1991), 414–443 | DOI | Zbl

[3] Brown D. L., Cortez R., Minion M. L., “Accurate projection methods for the incompressible Navier–Stokes equations”, J. Comput. Phys., 168 (2001), 464–499 | DOI | Zbl

[4] Guermond J. L., Shen J., “On the error estimates for the rotational pressure-correction projection methods”, Math. Comp., 73 (2004), 1719–1737 | DOI | Zbl

[5] Liu J.-G., Liu J., Pego R. L., “Stable and accurate pressure approximation for unsteady incompressible viscous flow”, J. Comput. Phys., 229 (2010), 3428–3453 | DOI | Zbl

[6] Orszag S. A., Kells L. C., “Transition to turbulence in plane Poiseuille and plane Couette flow”, J. Fluid Mech., 96 (1980), 159–205 | DOI | Zbl

[7] Rozhdestvensky B. L., Simakin I. N., “Secondary flows in a plane channel: their relationship and comparison with turbulent flows”, J. Fluid Mech., 147 (1984), 261–289 | DOI | Zbl

[8] Sani R. L., Shen J., Pironneau O., Gresho P. M., “Pressure boundary condition for the time-dependent incompressible Navier–Stokes equations”, Int. J. Numer. Methods Fluids, 50 (2006), 673–682 | DOI | Zbl

[9] Guermond J. L., Minev P., Shen J., “An overview of projection methods for incompressible flows”, Comput. Methods Appl. Mech. Eng., 195 (2006), 6011–6045 | DOI | Zbl

[10] Chorin A. J., “Numerical solutions of the Navier–Stokes equations”, Math. Comp., 22 (1968), 745–762 | DOI | Zbl

[11] Temam R., “Sur l'approximation de la solution des équations de Navier–Stokes par la méthode de pas fractionaires, II”, Arch. Rat. Mech. Anal., 33 (1969), 377–385 | DOI | Zbl

[12] Yanenko N. N., Metod drobnykh shagov resheniya mnogomernykh zadach matematicheskoi fiziki, Nauka, Novosibirsk, 1967

[13] Marchuk G. I., Metody rasschepleniya, Nauka, M., 1988

[14] Samarskii A. A., Vabischevich P. N., Additivnye skhemy dlya zadach matematicheskoi fiziki, Nauka, M., 1999

[15] Vabischevich P. N., “Additivnye skhemy dlya nekotorykh differentsialno-operatornykh uravnenii”, Zh. Vychisl. Matem. i Matem. Fiz., 50:12 (2010), 2144–2154 | Zbl

[16] Henriksen M. O., Holmen J., “Algebraic splitting for incompressible Navier–Stokes equations”, J. Comput. Phys., 175 (2002), 438–453 | DOI | Zbl

[17] Chang W., Giraldo F., Perot B., “Analysis of an exact fractional step method”, J. Comput. Phys., 180 (2002), 183–199 | DOI | Zbl

[18] Veneziani A., “Block factorized preconditioners for high-order accurate in time approximation of the Navier–Stokes equations”, Numer. Methods Partial Differential Equations, 19 (2003), 487–510 | DOI | Zbl

[19] Gervasio P., Saleri F., Veneziani A., “Algebraic fractional-step schemes with spectral methods for the incompressible Navier–Stokes equations”, J. Comput. Phys., 214 (2006), 347–365 | DOI | Zbl

[20] Perot B., “An analysis of the fractional step method”, J. Comput. Phys., 108 (1993), 51–58 | DOI | Zbl

[21] Kleiser L., Schumann U., “Spectral simulations of the laminar-turbulent transition process in plane Poiseuille flow”, Spectral Methods for Partial Differential Equations, SIAM, Philadelphia, 1984, 141–163

[22] Marcus P. S., “Simulation of Taylor–Couette flow. 1: Numerical methods and comparison with experiment”, J. Fluid Mech., 146 (1984), 45–64 | DOI | Zbl

[23] Tuckerman L. S., “Divergence-free velocity fields in nonperiodic geometries”, J. Comput. Phys., 80 (1989), 403–441 | DOI | Zbl

[24] Priymak V. G., Miyazaki T., “Accurate Navier–Stokes investigation of transitional and turbulent flows in a circular pipe”, J. Comput. Phys., 142 (1998), 370–411 | DOI | Zbl

[25] Leonard A., Wray A., “A new numerical method for the simulation of three-dimensional flow in a pipe”, Proceedings, 8th Internat. Conf. Numer. Methods in Fluid Dynamics, Lecture Notes in Physics, 170, Springer, 1982, 335–342 | DOI

[26] Moser R. D., Moin P., Leonard A., “A spectral numerical method for the Navier–Stokes equations with applications to Taylor–Couette flow”, J. Comput. Phys., 52 (1983), 524–544 | DOI | Zbl

[27] Glatzmaier G. A., “Numerical simulations of stellar convective dynamos. I: The model and method”, J. Comput. Phys., 55 (1984), 461–484 | DOI

[28] Lyuk Yu., Spetsialnye matematicheskie funktsii i ikh approksimatsii, Mir, M., 1980

[29] Orszag S. A., “Numerical simulation of incompressible flows within simple boundaries. 1: Galerkin (spectral) representations”, Studies Appl. Math., 50 (1971), 293–327 | Zbl

[30] Orszag S. A., “Accurate solution of the Orr–Sommerfeld stability equation”, J. Fluid Mech., 50 (1971), 689–703 | DOI | Zbl

[31] Ponomarev S. G., Priimak V. G., Rozhdestvenskii B. L., “Spektralnyi metod chislennogo modelirovaniya techenii vyazkoi zhidkosti v ploskom kanale i trube koltsevogo secheniya”, Preprinty IPM im. M. V. Keldysha AN SSSR, 1984, 094, 30 pp.

[32] Gottlieb D., Orszag S. A., Numerical analysis of spectral methods: theory and applications, NSF-CBMS Monograph, 26, Soc. Ind. Appl. Math., Philadelphia, 1977 | Zbl

[33] Ponomarev S. G., Priimak V. G., Rozhdestvenskii B. L., “Vtorichnye nestatsionarnye techeniya vyazkoi neszhimaemoi zhidkosti v trube koltsevogo secheniya”, Preprinty IPM im. M.V. Keldysha AN SSSR, 1984, 143, 28 pp.

[34] Patera A. T., Orszag S. A., “Finite-amplitude stability of axisymmetric pipe flow”, J. Fluid Mech., 112 (1981), 467–474 | DOI | Zbl