Mathematical modelling of media with time dispersion using fractional derivatives
Matematičeskoe modelirovanie, Tome 25 (2013) no. 12, pp. 50-64.

Voir la notice de l'article provenant de la source Math-Net.Ru

Electromagnetic fields in time-dispersed media with power dependence are analysed. It is shown that these media have fractal properties. Their fractal dimension is determined. The equations for scalar and vector potentials are found using Maxwell’s equations analogues presented with the help of Caputo differintegral. Electromagnetic fields are numerically calculated in bounded domain for arbitrary functions of charge and current.
Mots-clés : fractal electromagnetism, fractional calculus, time dispersion.
Keywords: fractional dimention of medium
@article{MM_2013_25_12_a4,
     author = {A. N. Bogolyubov and A. A. Koblikov and D. D. Smirnova and N. E. Shapkina},
     title = {Mathematical modelling of media with time dispersion using fractional derivatives},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {50--64},
     publisher = {mathdoc},
     volume = {25},
     number = {12},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2013_25_12_a4/}
}
TY  - JOUR
AU  - A. N. Bogolyubov
AU  - A. A. Koblikov
AU  - D. D. Smirnova
AU  - N. E. Shapkina
TI  - Mathematical modelling of media with time dispersion using fractional derivatives
JO  - Matematičeskoe modelirovanie
PY  - 2013
SP  - 50
EP  - 64
VL  - 25
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2013_25_12_a4/
LA  - ru
ID  - MM_2013_25_12_a4
ER  - 
%0 Journal Article
%A A. N. Bogolyubov
%A A. A. Koblikov
%A D. D. Smirnova
%A N. E. Shapkina
%T Mathematical modelling of media with time dispersion using fractional derivatives
%J Matematičeskoe modelirovanie
%D 2013
%P 50-64
%V 25
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2013_25_12_a4/
%G ru
%F MM_2013_25_12_a4
A. N. Bogolyubov; A. A. Koblikov; D. D. Smirnova; N. E. Shapkina. Mathematical modelling of media with time dispersion using fractional derivatives. Matematičeskoe modelirovanie, Tome 25 (2013) no. 12, pp. 50-64. http://geodesic.mathdoc.fr/item/MM_2013_25_12_a4/

[1] Samko S. G., Kilbas A. A., Marichev O. I., Integraly i proizvodnye drobnogo poryadka i nekotorye ikh primeneniya, Nauka i tekhnika, Minsk, 1987 | Zbl

[2] Nakhushev A. M., Drobnoe ischislenie i ego primenenie, Fizmatlit, M., 2003 | Zbl

[3] Mandelbrot B. B., Fraktalnaya geometriya prirody, Knizhnyi Dom, Minsk, 2002

[4] Kravchenko V. F., Rvachev V. L., Algebra logiki, atomarnye funktsii i veivlety v fizicheskikh prilozheniyakh, Fizmatlit, M., 2006 | Zbl

[5] Potapov A. A., Fraktaly v radiofizike i radiolokatsii: topologiya vyborki, Izd. 2-e, pererab. i dop., Universitetskaya kniga, M., 2005

[6] Bondarenko A. N., Ivaschenko D. S., “Metody chislennogo resheniya kraevykh zadach teorii anomalnoi diffuzii”, Sibirskie elektronnye matematicheskie izvestiya, 5 (2008), 581–594

[7] Feder E., Fraktaly, Per. s angl., Mir, M., 1991

[8] Bogolyubov A. N., Potapov A. A., Rekhviashvili S. Sh., “Metod drobnogo integro-differentsirovaniya v klassicheskoi elektrodinamike”, Vestnik MGU. Seriya 3. Fizika. Astronomiya, 2009, no. 3