Numerical modeling of Maxwells equations with dispersive materials
Matematičeskoe modelirovanie, Tome 25 (2013) no. 12, pp. 19-32.

Voir la notice de l'article provenant de la source Math-Net.Ru

Numerical solver EMWSolver3D using the FDTD-method for 3D Maxwell equations is developed. Maxwell equations' approximation in the integral form on Yee lattice is used for the numerical solution. Problems in bounded and infinite domains are possible to be solved using UPML absorbing layer. Dispersive material model is included for the media with both negative dielectric permittivity and magnetic permeability research. EMWSolver3D involves modules for both single-processor systems and supercomputer IBM BlueGene /P that allow to perform calculations on grids of the order of 400 wave lengths in each direction. Absorbing layer parameters affecting the accuracy of solution, such that the boundary reflection is low and does not influence on the magnetic field distibution in calculation region, are obtained. In this work the illustration of plane wave impinging on metamaterial with $\varepsilon=\mu-1$ with different angles are shown. Surface plasmon waves on metamaterial interface can be observed.
@article{MM_2013_25_12_a1,
     author = {A. N. Semenov and A. P. Smirnov},
     title = {Numerical modeling of {Maxwells} equations with dispersive materials},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {19--32},
     publisher = {mathdoc},
     volume = {25},
     number = {12},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2013_25_12_a1/}
}
TY  - JOUR
AU  - A. N. Semenov
AU  - A. P. Smirnov
TI  - Numerical modeling of Maxwells equations with dispersive materials
JO  - Matematičeskoe modelirovanie
PY  - 2013
SP  - 19
EP  - 32
VL  - 25
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2013_25_12_a1/
LA  - ru
ID  - MM_2013_25_12_a1
ER  - 
%0 Journal Article
%A A. N. Semenov
%A A. P. Smirnov
%T Numerical modeling of Maxwells equations with dispersive materials
%J Matematičeskoe modelirovanie
%D 2013
%P 19-32
%V 25
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2013_25_12_a1/
%G ru
%F MM_2013_25_12_a1
A. N. Semenov; A. P. Smirnov. Numerical modeling of Maxwells equations with dispersive materials. Matematičeskoe modelirovanie, Tome 25 (2013) no. 12, pp. 19-32. http://geodesic.mathdoc.fr/item/MM_2013_25_12_a1/

[1] Veselago V. G., “Elektrodinamika veschestv s odnovremenno otritsatelnymi znacheniyami $\varepsilon$ i $\mu$”, UFN, 92:7 (1967), 517 | DOI

[2] Pendry J. B., “Negative refraction makes a perfect lens”, Phys. Rev. Lett., 85 (2000), 3966–3969 | DOI

[3] Dolling G., Wegener M., Soukoulis C. M., Linden S., “Negative-index metamaterial at 780nm wavelength”, Opt. Lett., 32 (2007), 53–55 | DOI

[4] Gedney S. D., “An anisotropic perfectly matched layer absorbing media for the truncation of FDTD latices”, IEEE Trans. Antennas and Propagation, 44 (1996), 1630–1639 | DOI

[5] Sacks Z. S., Kingsland D. M., Lee R., Lee J. F., “A perfectly matched anisotropic absorber for use as an absorbing boundary condition”, IEEE Trans. Antennas and Propagation, 43:12 (1995), 1460–1463 | DOI

[6] Taflove A., Hagness S. C., Computational Electrodynamics: The Finite-Difference Time-Domain Method, Artech, Norwood, MA, 2000 | MR | Zbl

[7] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1989 | MR

[8] Kane Yee, “Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media”, IEEE Trans. Antennas and Propagation, 14 (1966), 302–307 | DOI | Zbl

[9] Semenov A. N., Smirnov A. P., Ignatyeva D. O., Sukhorukov A. P., “Mathematical Modeling of an Open Microcavity with a Layer of Metamaterial”, Izvestiya Rossiiskoi Akademii Nauk. Seriya Fizicheskaya, 75:12 (2011), 1741–1744

[10] Berenger J. P., “A perfectly matched layer for the absorption of electromagnetic waves”, J. Comput. Phys., 114:1 (1994), 185–200 | DOI | MR | Zbl

[11] Johnson S. G., Notes on Perfectly Matched Layers, 2007

[12] Taflove A., Dabkowski J., Genge M., “Mitigation of buried pipeline voltages due to 60Hz ac inductive coupling. I: Design of joint rights of way”; “II: Pipeline grounding methods”, IEEE Trans. Power Apparatus Systems, 98, Sept./Oct. (1979), 1806–1823 | DOI

[13] Hao Yang, Mittra Raj, FDTD Modeling of Metamaterials Theory and Applications, Artech House Publishers, 2009

[14] Cui Tie Jun, Smith David, Liu Ruopeng (eds.), Metamaterials: Theory, Design, and Applications, XXIV, 2010, 368 pp.

[15] Landau L. D., Lifshits E. M., Elektrodinamika sploshnykh sred, Nauka, M., 1992