Interaction of spherical bubbles with centers located on the same line
Matematičeskoe modelirovanie, Tome 25 (2013) no. 12, pp. 3-18.

Voir la notice de l'article provenant de la source Math-Net.Ru

A mathematical model and a technique for solving problems of close-range interaction of two and more spherical gas bubbles in a liquid, centers of which are located on the same line, are proposed. In the model, the effects of the liquid viscosity and compressibility, heat transfer between the bubbles and liquid are taken into account. The bubble dynamics is described by a system of the second order ordinary differential equations for the radii of the bubbles and their spatial positions and the first order ones for the gas temperature in each bubble. The equations for the radii of the bubbles and their spatial positions contain coefficients of expansion of the fluid velocity potential in Legendre polynomials, which are determined from a system of linear algebraic equations. The order of accuracy of the proposed model is arbitrary relative to the maximum value, over all pairs of interacting bubbles, of the ratio of sum of the radii of the bubbles in a pair to the distance between their centers. Verification of the proposed model and method of solution is conducted. Some examples of application of the proposed model to describing interaction between the two and three bubbles are presented.
Keywords: interaction of bubbles, acoustic field, fluid velocity potential.
@article{MM_2013_25_12_a0,
     author = {A. A. Aganin and A. I. Davletshin},
     title = {Interaction of spherical bubbles with centers located on the same line},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {3--18},
     publisher = {mathdoc},
     volume = {25},
     number = {12},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2013_25_12_a0/}
}
TY  - JOUR
AU  - A. A. Aganin
AU  - A. I. Davletshin
TI  - Interaction of spherical bubbles with centers located on the same line
JO  - Matematičeskoe modelirovanie
PY  - 2013
SP  - 3
EP  - 18
VL  - 25
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2013_25_12_a0/
LA  - ru
ID  - MM_2013_25_12_a0
ER  - 
%0 Journal Article
%A A. A. Aganin
%A A. I. Davletshin
%T Interaction of spherical bubbles with centers located on the same line
%J Matematičeskoe modelirovanie
%D 2013
%P 3-18
%V 25
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2013_25_12_a0/
%G ru
%F MM_2013_25_12_a0
A. A. Aganin; A. I. Davletshin. Interaction of spherical bubbles with centers located on the same line. Matematičeskoe modelirovanie, Tome 25 (2013) no. 12, pp. 3-18. http://geodesic.mathdoc.fr/item/MM_2013_25_12_a0/

[1] Aganin A. A., Davletshin A. I., “Utochnennaya model vzaimodeistviya sfericheskikh gazovykh puzyrkov v zhidkosti”, Matematicheskoe modelirovanie, 21:9 (2009), 89–98 | Zbl

[2] Kuznetsov G. N., Schukin I. E., “Vzaimodeistvie pulsiruyuschikh puzyrkov v vyazkoi zhidkosti”, Akust. zhurnal, 18 (1972), 565–570

[3] Doinikov A. A., “Translational motion of two interacting bubbles in a strong acoustic field”, Phys. Rev. E, 64:2 (2001), 02630 | DOI

[4] Harkin A., Kaper T. J., Nadim A., “Pulsation and translation of two gas bubbles”, J. Fluid Mech., 445 (2001), 377–411 | DOI | MR | Zbl

[5] Konovalova S. I., Akhatov I. Sh., “Structure formation in acoustic cavitation”, Mult. Science and Techn., 17 (2005), 343–371 | DOI

[6] Ilinskii Y. A., Hamilton M. F., Zabolotskaya E. A., “Bubble interaction dynamics in Lagrangian and Hamiltonian mechanics”, JASA, 121:2 (2007), 786–795 | DOI

[7] Voinov O. V., “O dvizhenii dvukh sfer v idealnoi zhidkosti”, PMM, 33:4 (1969), 659–667 | Zbl

[8] Voinov O. V., “Dvizhenie idealnoi zhidkosti okolo dvukh sfer s radialnymi skorostyami na poverkhnosti”, Vestnik Moskovskogo universiteta, 1969, no. 5, 83–88 | MR

[9] Hicks W. M., “On the motion of two spheres in a fluid”, Philosoph. Trans. Roy. Soc. of London, 171 (1880), 455–492 | DOI

[10] Khairer E., Nersett S., Vanner G., Reshenie obyknovennykh differentsialnykh uravnenii. Nezhestkie zadachi, Mir, M., 1990, 512 pp. | MR

[11] Hobson E. W., The theory of spherical and ellipsoidal harmonics, Cambridge Univ. Press, 1931

[12] Gavrilyuk S. L., Teshukov V. M., “Drag force acting on a bubble in a cloud of compressible spherical bubbles at large Reynolds number”, European Journal of Mechanics B/Fluids, 24:4 (2005), 468–477 | DOI | MR | Zbl

[13] Doinikov A. A., “Equations of coupled radial and translational motions of a bubble in a weakly compressible liquid”, Phys. Fluids, 17:12 (2005), 128101 | DOI | Zbl

[14] Prosperetti A., Lezzi A., “Bubble dynamics in a compressible liquid. 1: First-order theory”, J. Fluid Mech., 168 (1986), 457–478 | DOI | Zbl

[15] Aganin A. A., Guseva T. C., “Effekt slaboi szhimaemosti zhidkosti pri vzaimodeistvii puzyrkov v silnykh akusticheskikh polyakh”, Izvestiya RAN. MZhG, 2010, no. 3, 3–16

[16] Reddy A. J., Szeri A. J., “Coupled dynamics of translation and collapse of acoustically driven microbubbles”, JASA, 112:4 (2002), 1346–1352 | DOI

[17] Hilgenfeldt S., Grossmann S., Lohse D., “Sonoluminescence light emission”, Phys. Fluids, 11:6 (1999), 1318–1330 | DOI | MR | Zbl

[18] Miln-Tomson L. M., Teoreticheskaya gidrodinamika, Mir, M., 1964, 660 pp.

[19] Lamb G., Gidrodinamika, OGIZ, M., 1947, 928 pp.