High-performance stability analysis for cross-periodic flows
Matematičeskoe modelirovanie, Tome 25 (2013) no. 11, pp. 111-120.

Voir la notice de l'article provenant de la source Math-Net.Ru

The work is devoted to a multiprocessor implementation of a stability analysis technology for cross-periodic flows. This technology includes computations of such stability characteristics as the critical Reynolds numbers and maximal amplification of the kinetic energy of disturbances. The technology has been originally created for personal computers. It’s multiprocessor implementation solves the problem of high computational cost of industrial numerical analysis of cross-periodic flows stability.
Keywords: hydrodynamic stability, cross-periodic flows, critical Reynolds numbers, maximal amplification of the kinetic energy of disturbances
Mots-clés : multiprocessor implementation.
@article{MM_2013_25_11_a8,
     author = {N. V. Klyushnev},
     title = {High-performance stability analysis for cross-periodic flows},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {111--120},
     publisher = {mathdoc},
     volume = {25},
     number = {11},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2013_25_11_a8/}
}
TY  - JOUR
AU  - N. V. Klyushnev
TI  - High-performance stability analysis for cross-periodic flows
JO  - Matematičeskoe modelirovanie
PY  - 2013
SP  - 111
EP  - 120
VL  - 25
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2013_25_11_a8/
LA  - ru
ID  - MM_2013_25_11_a8
ER  - 
%0 Journal Article
%A N. V. Klyushnev
%T High-performance stability analysis for cross-periodic flows
%J Matematičeskoe modelirovanie
%D 2013
%P 111-120
%V 25
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2013_25_11_a8/
%G ru
%F MM_2013_25_11_a8
N. V. Klyushnev. High-performance stability analysis for cross-periodic flows. Matematičeskoe modelirovanie, Tome 25 (2013) no. 11, pp. 111-120. http://geodesic.mathdoc.fr/item/MM_2013_25_11_a8/

[1] Boiko A. V., Dovgal A. V., Grek G. R., Kozlov V. V., Physics of transitional shear flows, Springer, Berlin, 2011, 271 pp.

[2] Boiko A. V., Nechepurenko Yu. M., “Tekhnologiya chislennogo analiza vliyaniya orebreniya na vremennuyu ustoichivost ploskikh techenii”, ZhVM i MF, 50:6 (2010), 1109–1125 | MR | Zbl

[3] Boiko A. V., Nechepurenko Yu. M., Sadkane M., “Fast computation of optimal disturbances with a given accuracy for duct flows”, ZhVM i MF, 50:11 (2010), 2017–2027 | MR

[4] Canuto C., Hussaini M. Y., Quarteroni A., Zang T. A., Spectral methods. Fundamentals in single domains, Springer, Berlin, 2006, 563 pp. | MR | Zbl

[5] Weideman J. A. C., Reddy S. C., “A MATLAB differentiation matrix suite”, ACM Trans. Math. Software, 26:4 (2000), 465–519 | DOI | MR

[6] Nechepurenko Y. M., Sadkane M., “A low-rank approximation for computing the matrix exponential norm”, SIAM J. Matrix Anal. Appl., 32:2 (2011), 349–363 | DOI | MR | Zbl

[7] http://software.intel.com/en-us/intel-mkl

[8] Higham N. J., “The scaling and squaring method for the matrix exponential revisited”, SIAM J. Matrix Anal. Appl., 26:4 (2005), 1179–1193 | DOI | MR | Zbl

[9] Sidje R. B., “Software package for computing matrix exponentials”, ACM Trans. Math. Softw., 24:1 (1998), 130–156 | DOI | Zbl

[10] Antonov A. S., Parallelnoe programmirovanie s ispolzovaniem tekhnologii MPI, Izd-vo MGU, M., 2004, 71 pp.