Thermodynamic modelling of the magnetohydrodynamic turbulence
Matematičeskoe modelirovanie, Tome 25 (2013) no. 11, pp. 65-90.

Voir la notice de l'article provenant de la source Math-Net.Ru

A closed system of magnetohydrodynamic equations of mean motion designed to model turbulent flows in electrically conducting media in the presence of a magnetic field is derived in the approximation of single-fluid magnetohydrodynamics. Particular attention is given to the method of deriving the closing relations for the total (including the magnetic field) kinetic turbulent stress tensor and the so-called magnetic Reynolds tensor within the framework of extended irreversible thermodynamics. This also allows the constraints imposed by the entropy growth condition on the turbulent transport coefficients to be analyzed. We propose a technique for modeling the turbulent transport coefficients, in particular, the kinematic turbulent viscosity, which makes it possible to take into account the influence of a magnetic field and the inverse effect of heat transfer on the development of turbulence in electrically conducting media.
Keywords: mathematical modeling, thermodynamics of irreversible processes, developed turbulence, magnetohydrodynamics.
@article{MM_2013_25_11_a5,
     author = {A. V. Kolesnichenko},
     title = {Thermodynamic modelling of the magnetohydrodynamic turbulence},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {65--90},
     publisher = {mathdoc},
     volume = {25},
     number = {11},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2013_25_11_a5/}
}
TY  - JOUR
AU  - A. V. Kolesnichenko
TI  - Thermodynamic modelling of the magnetohydrodynamic turbulence
JO  - Matematičeskoe modelirovanie
PY  - 2013
SP  - 65
EP  - 90
VL  - 25
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2013_25_11_a5/
LA  - ru
ID  - MM_2013_25_11_a5
ER  - 
%0 Journal Article
%A A. V. Kolesnichenko
%T Thermodynamic modelling of the magnetohydrodynamic turbulence
%J Matematičeskoe modelirovanie
%D 2013
%P 65-90
%V 25
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2013_25_11_a5/
%G ru
%F MM_2013_25_11_a5
A. V. Kolesnichenko. Thermodynamic modelling of the magnetohydrodynamic turbulence. Matematičeskoe modelirovanie, Tome 25 (2013) no. 11, pp. 65-90. http://geodesic.mathdoc.fr/item/MM_2013_25_11_a5/

[1] Syrovatskii S. I., “Magnitnaya gidrodinamika”, UFN, 62:3 (1957), 247–303 | DOI

[2] Kulikovskii A. G., Lyubimov G. A., Magnitnaya gidrodinamika, Fizmatlit, M., 1962, 246 pp.

[3] Biskamp D., Magnetohydrodynamic turbulence, University Press, Cambridge, 2003, 297 pp. | Zbl

[4] De Groot S., Mazur P., Neravnovesnaya termodinamika, Mir, M., 1964, 456 pp.

[5] Akhiezer A. I., Akhiezer I. A., Polovin R. V., Sitenko A. G., Stepanov K. N., Elektrodinamika plazmy, Nauka, M., 1974, 718 pp.

[6] Ievlev V. M., Turbulentnoe dvizhenie vysokotemperaturnykh sploshnykh sred, Nauka, M., 1975, 256 pp.

[7] Favre A., “Statistical equations of turbulents gases”, Problems of Hydrodynamics and Continuum Mechanics, SIAM, Philadelphia, 1969, 231–267

[8] Marov M. Ya., Kolesnichenko A. V., Mechanics of turbulence of multicomponent gases, Kluwer Academic Publishers, Dordrecht–Boston–London, 2002, 375 pp. | MR

[9] Kolesnichenko A. V., “K teorii turbulentnosti v planetnykh atmosferakh. Chislennoe modelirovanie strukturnykh parametrov”, Astron. vestn., 29:2 (1995), 133–155

[10] Kolesnichenko A. V., Marov M. Ya., Turbulentnost mnogokomponentnykh sred, MAIK-Nauka, M., 1999, 336 pp.

[11] Tamm I. E., Osnovy teorii elektrichestva, Nauka, M., 1989, 504 pp.

[12] Zhou D., Kasas-Baskes Kh., Lebon Dzh., Rasshirennaya neobratimaya termodinamika, NITs «Regulyarnaya i khaoticheskaya dinamika». Institut kompyuternykh issledovanii, M.–Izhevsk, 2006, 528 pp.

[13] Kolesnichenko A. V., “Sootnosheniya Stefana–Maksvella i potok tepla dlya turbulentnykh mnogokomponentnykh sploshnykh sred”, Problemy sovremennoi mekhaniki, K yubileyu L. I. Sedova, Izd-vo MGU, M., 1998, 52–76 | Zbl

[14] Blackadar A. K., “Extension of the laws of thermodynamics to turbulent system”, J. Meteorology, 12 (1955)

[15] Dyarmati I., Neravnovesnaya termodinamika, Mir, M., 1974, 304 pp.

[16] Prigozhin I., Stengers I., Vremya. Khaos. Kvant. K resheniyu paradoksa vremeni, Izdatelskaya gruppa “Progress”, M., 1994, 240 pp.

[17] Moffat G., Vozbuzhdenie magnitnogo polya v provodyaschei srede, Mir, M., 1980, 339 pp.

[18] Yoshizawa A., “Self-consistend turbulent dynamo modeling of reversed field pinches and planetary magnetic fields”, Phys. Fluids B, 2:7 (1990), 1589–1600 | DOI

[19] Branover G. G., Tsinober A. B., Magnitnaya gidrodinamika neszhimaemykh sred, Nauka, M., 1970, 379 pp.

[20] Kolesnichenko A. V., Marov M. Ya., “O vliyanii spiralnosti na evolyutsiyu turbulentnosti v solnechnom protoplanetnom oblake”, Astron. vestnik, 41:1 (2007), 3–23 | MR

[21] Steenbeck M., Krause F., Rädler K.-H., “Berechnung der mittleren Lorentz–Feldstärke $\overline{\mathbf{V\times B}}$ für ein elektrisch leitendes Medium in turbulenter, durch Coriolis–Kräfte beeinflußter Bewegung”, Z. Naturforsch, 21a (1966), 369–376

[22] Krauze F., Redler K.-Kh., Magnitnaya gidrodinamika srednikh polei i teoriya dinamo, Mir, M., 1984, 315 pp.

[23] Landau L. D., Lifshits E. M., Elektrodinamika sploshnykh sred, Nauka, M., 1982, 620 pp. | MR

[24] Van-Driest E. R., “On turbulent flow near a wall”, J. Aeronaut. Sci., 23 (1956), 107 | DOI