Numerical analysis of topological characteristics of three-dimensional geological models of oil and gas fields
Matematičeskoe modelirovanie, Tome 25 (2013) no. 10, pp. 19-31.

Voir la notice de l'article provenant de la source Math-Net.Ru

We discuss the study of topological characteristics of random fields those are used for numerical simulation of oil reservoirs and numerical algorithms for computing such characteristics, for which we demonstrate results of their applications.
Keywords: geological modeling, computational topology, persistent homology.
@article{MM_2013_25_10_a1,
     author = {Ya. V. Bazaikin and V. A. Baikov and I. A. Taimanov and A. A. Yakovlev},
     title = {Numerical analysis of topological characteristics of three-dimensional geological models of oil and gas fields},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {19--31},
     publisher = {mathdoc},
     volume = {25},
     number = {10},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2013_25_10_a1/}
}
TY  - JOUR
AU  - Ya. V. Bazaikin
AU  - V. A. Baikov
AU  - I. A. Taimanov
AU  - A. A. Yakovlev
TI  - Numerical analysis of topological characteristics of three-dimensional geological models of oil and gas fields
JO  - Matematičeskoe modelirovanie
PY  - 2013
SP  - 19
EP  - 31
VL  - 25
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2013_25_10_a1/
LA  - ru
ID  - MM_2013_25_10_a1
ER  - 
%0 Journal Article
%A Ya. V. Bazaikin
%A V. A. Baikov
%A I. A. Taimanov
%A A. A. Yakovlev
%T Numerical analysis of topological characteristics of three-dimensional geological models of oil and gas fields
%J Matematičeskoe modelirovanie
%D 2013
%P 19-31
%V 25
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2013_25_10_a1/
%G ru
%F MM_2013_25_10_a1
Ya. V. Bazaikin; V. A. Baikov; I. A. Taimanov; A. A. Yakovlev. Numerical analysis of topological characteristics of three-dimensional geological models of oil and gas fields. Matematičeskoe modelirovanie, Tome 25 (2013) no. 10, pp. 19-31. http://geodesic.mathdoc.fr/item/MM_2013_25_10_a1/

[1] Baikov V. A., Bochkov A. S., Yakovlev A. A., “Uchet neodnorodnosti pri geologo-gidrodinamicheskom modelirovanii Priobskogo mestorozhdeniya”, Neftyanoe khozyaistvo, 2011, no. 5, 50–54

[2] Baikov V. A., Yakovlev A. A., “Vosproizvedenie geologicheskoi neodnorodnosti v geologo-gidrodinamicheskikh modelyakh”, Nauchno-tekhnicheskii vestnik Rosnefti, 2010, no. 2, 13–15 | MR

[3] Baikov V. A., Bezrukov A. V., Bikbulatov S. M., Emchenko O. V., Mukharlyamov A. R., Suleimanov D. D., Usmanov T. S., “Ispolzovanie dannykh normalnoi ekspluatatsii skvazhin dlya ustraneniya neopredelennosti pri geostokhasticheskom modelirovanii”, Neftyanoe khozyaistvo, 2009, no. 11, 16–19

[4] Baikov V. A., Bakirov N. K., Emchenko O. V., Roschektaev A. P., Yakovlev A. A., “Geologicheskoe mnogofaktornoe modelirovanie na primere Priobskogo mestorozhdeniya”, Innovatsionnye tekhnologii dlya toplivno-energeticheskogo kompleksa Rossii, 1, NTs RIT, M., 2010, 16–19

[5] Edelsbrunner H., Geometry and topology for mesh generation, Cambridge University Press, Cambridge, 2001 | MR | Zbl

[6] Kaczynski T., Mischaikow K., Mrozek M., Computational Homology, Appl. Math. Sci. Series, 157, Springer-Verlag, New York, 2004 | MR | Zbl

[7] Zomorodian A. J., Topology for computing, Cambridge University Press, Cambridge, 2005 | MR | Zbl

[8] Edelsbrunner H., Letscher D., Zomorodian A., “Topological persistence and simplification”, Discrete Comp. Geom., 28 (2002), 511–533 | DOI | MR | Zbl

[9] Zomorodian A., Carlsson G., “Computing persistent homology”, Discrete Comp. Geom., 33 (2005), 249–274 | DOI | MR | Zbl

[10] Cohen-Steiner D., Edelsbrunner H., Harer J., “Stability of persistence diagrams”, Proc. 21st Symp. Comp. Geom. (2005), 263–271 | MR

[11] Bubenik P., Kim P. T., “A statistical approach to persistent homology”, Homology, Homotopy and Applications, 9:2 (2007), 337–362 | MR | Zbl

[12] Edelsbrunner H., Harer J., “Persistent homology — a survey”, Surveys on discrete and computational geometry, Contemp. Math., 453, Amer. Math. Soc., Providence, RI, 2008, 257–282 | DOI | MR | Zbl

[13] Ghrist R., “Barcodes: The persistent topology of data”, Bull. Amer. Math. Soc., 45 (2008), 61–75 | DOI | MR | Zbl

[14] Carlsson G., “Topology and data”, Bull. Amer. Math. Soc., 46 (2009), 255–308 | DOI | MR | Zbl

[15] Carlsson G., Zomorodian A., “The theory of multidimensional persistence”, Discrete Comp. Geom., 42 (2009), 71–93 | DOI | MR | Zbl

[16] Adler R. J., Bobrowski O., Borman M. S., Subag E., Weinberger S., “Persistent Homology for Random Fields and Complexes”, Borrowing strength: theory powering applications, a Festschrift for Lawrence D. Brown, Inst Math. Stat. Collect., 6, Inst. Math. Statist., Beachwood, OH, 2010, 124–143 | MR

[17] Adler R. J., Taylor J. E., Random Fields and Geometry, Springer Monographs in Mathematics, Springer, New-York, 2007 | MR

[18] Bazaikin Ya. V., Taimanov I. A., “Ob odnom chislennom algoritme vychisleniya topologicheskikh kharakteristik trekhmernykh tel”, ZhVMiMF, 2013 (to appear) , arXiv: 1302.3669

[19] Deutsch C. V., Journel A. G., GSLIB, Geostatistical software library and User's guide, Oxford University Press, New-York, 1992

[20] Baikov V. A., Bakirov N. K., Yakovlev A. A., “Novye podkhody v teorii geostatisticheskogo modelirovaniya”, Vestnik UGATU, 37:2 (2010), 209–215 | MR

[21] Baikov V. A., Bakirov N. K., Yakovlev A. A., “Novye podkhody k voprosam geologo-gidrodinamicheskogo modelirovaniya”, Neftyanoe khozyaistvo, 2010, no. 9, 56–59

[22] Zeifert G., Trelfall V., Variatsionnoe ischislenie v tselom, NITs RKhD, Izhevsk, 2000

[23] Dubrovin B. A., Novikov S. P., Fomenko A. T., Sovremennaya geometriya. Metody teorii gomologii, Nauka, M., 1984 | MR