Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2013_25_10_a0, author = {E. N. Aristova}, title = {Bicompact scheme for linear inhomogeneous transport equation in a case of a big optical width}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {3--18}, publisher = {mathdoc}, volume = {25}, number = {10}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2013_25_10_a0/} }
TY - JOUR AU - E. N. Aristova TI - Bicompact scheme for linear inhomogeneous transport equation in a case of a big optical width JO - Matematičeskoe modelirovanie PY - 2013 SP - 3 EP - 18 VL - 25 IS - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2013_25_10_a0/ LA - ru ID - MM_2013_25_10_a0 ER -
E. N. Aristova. Bicompact scheme for linear inhomogeneous transport equation in a case of a big optical width. Matematičeskoe modelirovanie, Tome 25 (2013) no. 10, pp. 3-18. http://geodesic.mathdoc.fr/item/MM_2013_25_10_a0/
[1] Aristova E. N., Baidin D. F., Rogov B. V., “Bikompaktnye skhemy dlya neodnorodnogo lineinogo uravneniya perenosa”, Matematicheskoe modelirovanie, 25:5 (2013), 55–66
[2] Rogov B. V., Mikhailovskaya M. N., “Bikompaktnye skhemy chetvertogo poryadka approksimatsii dlya giperbolicheskikh uravnenii”, DAN, 430:4 (2010), 470–474 | MR | Zbl
[3] Rogov B. V., Mikhailovskaya M. N., “Monotonnye bikompaktnye skhemy dlya lineinogo uravneniya perenosa”, Matematicheskoe modelirovanie, 23:6 (2011), 98–110 | MR | Zbl
[4] Rogov B. V., Mikhailovskaya M. N., “Monotonnye bikompaktnye skhemy dlya lineinogo uravneniya perenosa”, DAN, 436:5 (2011), 600–605 | MR | Zbl
[5] Rogov B. V., Mikhailovskaya M. N., “Monotonnaya vysokotochnaya kompaktnaya skhema beguschego scheta dlya kvazilineinykh uravnenii giperbolicheskogo tipa”, DAN, 440:2 (2011), 172–177 | MR | Zbl
[6] Mikhailovskaya M. N., Rogov B. V., “Bikompaktnye monotonnye skhemy dlya mnogomernogo lineinogo uravneniya perenosa”, Matematicheskoe modelirovanie, 23:10 (2011), 107–116 | MR | Zbl
[7] Mikhailovskaya M. N., Rogov B. V., “Monotonnye kompaktnye skhemy beguschego scheta dlya sistem uravnenii giperbolicheskogo tipa”, ZhVM i MF, 52:4 (2012), 672–695 | MR
[8] Bakirova M. I., Karpov V. Ya., Mukhina M. I., “Kharakteristiko-interpolyatsionnyi metod resheniya uravneniya perenosa”, Differentsialnye uravneniya, 22:7 (1986), 1141–1148 | MR | Zbl
[9] Aristova E. N., Baidin D. F., Goldin V. Ya., “Dva varianta ekonomichnogo metoda resheniya uravneniya perenosa v $r-z$ geometrii na osnove perekhoda k peremennym Vladimirova”, Matematicheskoe modelirovanie, 18:7 (2006), 43–52 | MR | Zbl
[10] Mathews K. A., “On the propagation of rays in discrete ordinates”, Nucl. Sci. and Eng., 123 (1999), 155–180
[11] Lathrop K. D., “Spatial differencing of the transport equation: Positivity vs. accuracy”, J. Comput. Phys., 4:4 (1969), 475–490 | DOI
[12] Nikolaeva O. V., “Spetsialnye setochnye approksimatsii dlya uravneniya perenosa v silno geterogennykh sredakh s $x-y$ geometriei”, ZhVM i MF, 44:5 (2004), 883–903 | MR | Zbl
[13] Shilkov A. V., Metod lebegovskogo osredneniya uravneniya perenosa chastits v srede, preprint No 100, IPM im. M. V. Keldysha AN SSSR, M., 1987 | MR
[14] Shilkov A. V., Matematicheskaya model dlya opisaniya neravnovesnoi izluchayuschei plazmy, preprint No 125, IPM AN SSSR, M., 1988
[15] Shilkov A. V., Tsvetkova I. L., Shilkova S. V., “Sistema kodov i bank dannykh ATRAD dlya pretsizionnykh raschetov atmosfernoi radiatsii”, Matemat. modelirovanie, 6:7 (1994), 91–102 | MR
[16] Shilkov A. V., Tsvetkova I. L., Shilkova S. V., “Sistema ATRAD dlya raschetov atmosfernoi radiatsii: lebegovskoe osrednenie spektrov i sechenii pogloscheniya”, Matemat. modelirovanie, 9:6 (1997), 3–24
[17] Tsvetkova I. L., Shilkov A. V., “Osrednenie uravneniya perenosa v rezonansno pogloschayuschei srede”, Matemat. modelirovanie, 1:1 (1989), 91–100 | MR | Zbl
[18] Tsvetkova I. L., Shilkov A. V., Realizatsiya metoda lebegovskogo osredneniya uravneniya perenosa izlucheniya, preprint No 100, IPM im. M. V. Keldysha AN SSSR, M., 1989 | MR
[19] Shilkov A. V., “Metody osredneniya sechenii i energeticheskogo spektra v zadachakh perenosa neitronov”, Matem. modelirovanie, 3:2 (1991), 63–81 | MR
[20] Shilkov A. V., “Averaging of cross-sections and energy spectrum in neutron transport problems”, Advances in Math., Comp., and Reactor Physics, Proc. of the Int. Topical Meeting (1991, Pittsburgh, USA), v. 3, 13.1.1
[21] Mozheiko S. V., Tsvetkova I. L., Shilkov A. V., “Raschet perenosa izlucheniya v goryachem vozdukhe”, Matem. modelirovanie, 4:1 (1992), 65–82 | MR
[22] Shilkov A. V., “Generalized Multigroup Approximation and Lebesgue Averaging Method in Particle Transport Problems”, Transp. Theory and Stat. Physics, 23:6 (1994), 781–814 | DOI | MR | Zbl
[23] Shilkov A. V., Shilkova S. V., Goldin V. Ya., Aristova E. N., “Ekonomichnye pretsizionnye raschety atmosfernoi radiatsii na osnove sistemy ATRAD”, DAN, 369:5 (1999), 611–613
[24] Shilkov A. V., Shilkova S. V., Goldin V. Ya., Aristova E. N., “Sistema ATRAD dlya raschetov atmosfernoi radiatsii: raschety solnechnogo izlucheniya dlya letnei atmosfery srednikh shirot”, Matematicheskoe modelirovanie, 11:5 (1999), 117–125
[25] Shilkov A. V., Gertsev M. N., Aristova E. N., Shilkova S. V., “Metodika etalonnykh “line-by-line” raschetov atmosfernoi radiatsii”, Kompyuternye issledovaniya i modelirovanie, 4:3 (2012)
[26] Rosenbrock H., “Some general implicit processes for numerical solution of differential equations”, Computer Journal, 5:4 (1963), 329–330 | DOI | MR | Zbl
[27] Kalitkin N. N., “Poluneyavnye skhemy dlya zadach bolshoi zhestkosti”, v. 1, Entsiklopediya nizkotemperaturnoi plazmy, Seriya B, VII-1, ed. Yu. P. Popov, Yanus-K, M., 153–171
[28] Aristova E. N., Rogov B. V., “O realizatsii granichnykh uslovii v bikompaktnykh skhemakh dlya lineinogo uravneniya perenosa”, Matematicheskoe modelirovanie, 24:10 (2012), 3–14 | Zbl
[29] Dekker K., Verver Ya., Ustoichivost metodov Runge–Kutty dlya zhestkikh nelineinykh differentsialnykh uravnenii, Mir, M., 1988, 334 pp. | MR
[30] Khairer E., Vanner G., Reshenie obyknovennykh differentsialnykh uravnenii. Zhestkie i differentsialno-algebraicheskie zadachi, Mir, M., 1999, 685 pp.