The Plank function approximation
Matematičeskoe modelirovanie, Tome 24 (2012) no. 9, pp. 63-69
Cet article a éte moissonné depuis la source Math-Net.Ru
In thermal radiation transport problems often it is required to calculate the integral from Plank function on a finite interval of spectrum. The paper presents analytical approximation of this integral and related integrals.
Keywords:
thermal radiation, Plank function, incomplete Riemann zeta function, analytical approximation.
@article{MM_2012_24_9_a4,
author = {A. V. Shilkov},
title = {The {Plank} function approximation},
journal = {Matemati\v{c}eskoe modelirovanie},
pages = {63--69},
year = {2012},
volume = {24},
number = {9},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MM_2012_24_9_a4/}
}
A. V. Shilkov. The Plank function approximation. Matematičeskoe modelirovanie, Tome 24 (2012) no. 9, pp. 63-69. http://geodesic.mathdoc.fr/item/MM_2012_24_9_a4/
[1] Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii, Per. s angl., v. 1, Izd-vo Nauka, M., 1973, 296 pp.
[2] Tsvetkova I. L., Shilkov A. V., Realizatsiya metoda lebegovskogo osredneniya uravneniya perenosa izlucheniya, preprint, Inst. prikl. matematiki im. M. V. Keldysha AN SSSR, M., 1989, 22 pp.
[3] Chetverushkin B. N., Matematicheskoe modelirovanie zadach dinamiki izluchayuschego gaza, Nauka, M., 1985, 304 pp. | Zbl