The Plank function approximation
Matematičeskoe modelirovanie, Tome 24 (2012) no. 9, pp. 63-69.

Voir la notice de l'article provenant de la source Math-Net.Ru

In thermal radiation transport problems often it is required to calculate the integral from Plank function on a finite interval of spectrum. The paper presents analytical approximation of this integral and related integrals.
Keywords: thermal radiation, Plank function, incomplete Riemann zeta function, analytical approximation.
@article{MM_2012_24_9_a4,
     author = {A. V. Shilkov},
     title = {The {Plank} function approximation},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {63--69},
     publisher = {mathdoc},
     volume = {24},
     number = {9},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2012_24_9_a4/}
}
TY  - JOUR
AU  - A. V. Shilkov
TI  - The Plank function approximation
JO  - Matematičeskoe modelirovanie
PY  - 2012
SP  - 63
EP  - 69
VL  - 24
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2012_24_9_a4/
LA  - ru
ID  - MM_2012_24_9_a4
ER  - 
%0 Journal Article
%A A. V. Shilkov
%T The Plank function approximation
%J Matematičeskoe modelirovanie
%D 2012
%P 63-69
%V 24
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2012_24_9_a4/
%G ru
%F MM_2012_24_9_a4
A. V. Shilkov. The Plank function approximation. Matematičeskoe modelirovanie, Tome 24 (2012) no. 9, pp. 63-69. http://geodesic.mathdoc.fr/item/MM_2012_24_9_a4/

[1] Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii, Per. s angl., v. 1, Izd-vo Nauka, M., 1973, 296 pp.

[2] Tsvetkova I. L., Shilkov A. V., Realizatsiya metoda lebegovskogo osredneniya uravneniya perenosa izlucheniya, preprint, Inst. prikl. matematiki im. M. V. Keldysha AN SSSR, M., 1989, 22 pp.

[3] Chetverushkin B. N., Matematicheskoe modelirovanie zadach dinamiki izluchayuschego gaza, Nauka, M., 1985, 304 pp. | Zbl