Monte-Carlo method for two component plasmas
Matematičeskoe modelirovanie, Tome 24 (2012) no. 9, pp. 35-49.

Voir la notice de l'article provenant de la source Math-Net.Ru

The direct simulation method of Monte-Carlo type for Coulomb collisions in the case of two component plasma is considered. The illustrative numerical simulation of the initial distribution relaxation for two sorts of particles in 3D velocity space is performed. Simulation results are compared with the numerical results based on the completely conservative finite difference schemes for the Landau–Fokker–Planck equation. Estimation of calculation accuracy is given for the wide range of numerical parameters.
Keywords: Boltzmann equation, nonlinear Landau–Fokker–Planck kinetic equation, Monte-Carlo method, temperature relaxation.
Mots-clés : Coulomb collisions
@article{MM_2012_24_9_a2,
     author = {A. V. Bobylev and I. F. Potapenko and S. A. Karpov},
     title = {Monte-Carlo method for two component plasmas},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {35--49},
     publisher = {mathdoc},
     volume = {24},
     number = {9},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2012_24_9_a2/}
}
TY  - JOUR
AU  - A. V. Bobylev
AU  - I. F. Potapenko
AU  - S. A. Karpov
TI  - Monte-Carlo method for two component plasmas
JO  - Matematičeskoe modelirovanie
PY  - 2012
SP  - 35
EP  - 49
VL  - 24
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2012_24_9_a2/
LA  - ru
ID  - MM_2012_24_9_a2
ER  - 
%0 Journal Article
%A A. V. Bobylev
%A I. F. Potapenko
%A S. A. Karpov
%T Monte-Carlo method for two component plasmas
%J Matematičeskoe modelirovanie
%D 2012
%P 35-49
%V 24
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2012_24_9_a2/
%G ru
%F MM_2012_24_9_a2
A. V. Bobylev; I. F. Potapenko; S. A. Karpov. Monte-Carlo method for two component plasmas. Matematičeskoe modelirovanie, Tome 24 (2012) no. 9, pp. 35-49. http://geodesic.mathdoc.fr/item/MM_2012_24_9_a2/

[1] Cherchinyani K., Teoriya i prilozheniya uravneniya Boltsmana, Mir, M., 1978, 496 pp. | MR

[2] Landau L. D., “Kineticheskoe uravnenie v sluchae kulonovskogo vzaimodeistviya”, ZhETF, 7 (1937), 203 | Zbl

[3] Rosenbluth M. N., MacDonald W. M., Judd D., “Fokker–Planck equation for an inverse-square force”, Phys. Rev., 107 (1957), 1–6 | DOI | MR | Zbl

[4] Dnestrovskii Yu. N., Kostomarov D. P., Matematicheskoe modelirovanie plazmy, Nauka, M., 1982, 338 pp.

[5] Karney C. F. F., “Fokker–Planck and quasi linear codes”, Computer Physics Reports, 4, North-Holland, Amsterdam, 1986, 183–244 | DOI

[6] Bobylev A. V., “O razlozhenii integrala stolknovenii Boltsmana v ryad Landau”, DAN SSSR, 225:3 (1975), 535–538 | MR

[7] Bobylev A. V., Priblizhenie Landau v kineticheskoi teorii gazov i plazmy, preprint No 76, IPM im. M. V. Keldysha AN SSSR, Moskva, 1974, 49 pp. | MR

[8] Bird G. A., Molecular gas dynamics and the direct simulation of gas flows, Clarendon Press, Oxford, 1994, 458 pp. | MR

[9] Potapenko I. F., Bobylev A. V., Mossberg E., “Deterministic and stochastic methods for nonlinear Landau–Fokker–Planck kinetic equations with applications to plasma physics”, Transp. Theory Stat. Phys., 37 (2008), 113–170 | DOI | MR

[10] Buet C., Cordier S., “Numerical analysis of the isotropic Fokker–Planck–Landau equation”, J. Comput. Phys., 179:1 (2002), 43–67 | DOI | MR | Zbl

[11] Lemou M., Luc M., “Implicit schemes for the Fokker–Planck–Landau equation”, SIAM J. Sci. Comput., 27:3 (2005), 809–830 | DOI | MR | Zbl

[12] Bachman G., Narici L., Beckenstein E., Fourier and wavelet analysis, Springer-Verlag, New York–Berlin–Heidelberg, 2002, 505 pp. | MR

[13] Bobylev A. V., Vedenyapin V. V., Preobrazovanie Fure integralov stolknovenii Boltsmana i Landau, preprint No 125, IPM AN SSSR, 1981

[14] Pareschi L., Russo G., Toscani G., “Fast spectral methods for the Fokker–Planck–Landau collision operator”, J. Comput. Phys., 165 (2000), 216–236 | DOI | MR | Zbl

[15] Filbet F., Pareschi L., “A numerical method for the accurate solution of the Fokker–Planck–Landau equation in the nonhomogeneous case”, J. Comput. Phys., 179 (2002), 1–26 | DOI | MR | Zbl

[16] Ivanov M. F., Galburt V. A., “Stokhasticheskii podkhod k chislennomu resheniyu uravnenii Fokkera–Planka”, Mat. mod., 20:11 (2008), 3–27 | MR | Zbl

[17] Takizuka T., Abe H., “A binary collision model for plasma simulation with a particle code”, J. Comput. Phys., 25 (1977), 205–219 | DOI | Zbl

[18] Nanbu K., “Theory of cumulative small-angle collisions in plasmas”, Phys. Rev. E, 55 (1997), 4642–4652 | DOI

[19] Wang C., Lin T., Caflisch R. E., Cohen B., Dimits A., “Particle simulation of Coulomb collisions: Comparing the methods of Takizuka Abe and Nanbu”, J. Comp. Phys., 227 (2008), 4308–4329 | DOI | MR | Zbl

[20] Bobylev A. V., Nanbu K., “Theory of collision algorithms for gases and plasmas based on the Boltzmann equation and the Landau–Fokker–Planck equation”, Phys. Rev. E, 61 (2000), 4576–4586 | DOI | MR

[21] Mossberg E., Some numerical and analytical methods for equations of wave propagation and kinetic theory, PhD thesis, Karlstad University Studies, 2008, 33 pp.

[22] Bobylev A. V., Mossberg E., Potapenko I. F., “A DSMC method for the Landau–Fokker–Planck equation”, Rarefied Gas Dynamics, Proceedings of XXV International symposium on RGD (St. Petersburg, July 21–28, 2006), eds. M. S. Ivanov, A. K. Rebrov, Publ. of the Seberian Branch of RAS, Novosibirsk, 479–483

[23] Bobylev A. V., “The theory of the nonlinear spatially uniform Boltzmann equation for Maxwell molecules”, Mathematical Physics Reviews, v. 7, eds. S. P. Novikov, Ya. G. Sinai, New York, 1988, 111–233 | MR | Zbl

[24] Bobylev A. V., Potapenko I. F., Chuyanov V. A., “Kineticheskie uravneniya tipa Landau kak model uravneniya Boltsmana i polnostyu konservativnye raznostnye skhemy”, Zh. vychisl. matem. i mat. fiz., 20:4 (1980), 993–1004 | MR | Zbl

[25] Bobylev A. V., Potapenko I. F., Chuyanov V. A., “Polnostyu konservativnye raznostnye skhemy dlya nelineinykh kineticheskikh uravnenii tipa Landau (Fokkera–Planka)”, DAN AN SSSR, 255:6 (1980), 1348–1352 | MR

[26] Dimarco G., Caflisch R., Pareschi L., “Direct simulation Monte Carlo schemes for Coulomb interactions in plasmas”, Communications in Applied and Industrial Mathematics, 1:1 (2010), 72–91 | MR

[27] Arsenev A. A., “O svyazi mezhdu uravneniyami Boltsmana i Landau–Fokkera–Planka”, DAN, 305:2 (1989), 322–324 | MR

[28] Arsenev A. A., Lektsii o kineticheskikh uravneniyakh, Nauka, M., 1992 | MR

[29] Silin V. P., Vvedenie v kineticheskuyu teoriyu gazov, Nauka, M., 1971, 339 pp. | Zbl

[30] Bobylev A. V., Potapenko I. F., Sakanaka P. H., “Relaxation of two-temperature plasma”, Phys. Rev. E, 56 (1997), 2081–2093 | DOI

[31] Potapenko I. F., Bobylev A. V., Azevedo C. A., Sakanaka P. H., “On the relaxation of cold electrons and hot ions”, Phys. of Plasmas, 5 (1998), 36–44 | DOI