Description technique of relations between Euler's grid and Lagrange objects
Matematičeskoe modelirovanie, Tome 24 (2012) no. 8, pp. 97-108.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper presents the technique of using data with dynamic structure to describe relations between Euler’s grid and Lagrange objects, as well as a realizing algorithm having asymptotic complexity $O(N^*\log(N))$ when creating data structure and $O(N)$ to support it in actual state. The algorithm workability has been demonstrated by the example of the problem on solid particles movement in gas in the most unfavourable case: particle Lagrange coordinates are not regulated in space, herewith, the relation of a particle relaxation time to integrating step as well as the relation of particle mass to gas mass can have arbitrary value.
Keywords: mechanics of continua, multiphase media, Eulerian grid, Lagrangian particle, data with dynamic structure, interaction.
@article{MM_2012_24_8_a5,
     author = {S. A. Andrianov},
     title = {Description technique of relations between {Euler's} grid and {Lagrange} objects},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {97--108},
     publisher = {mathdoc},
     volume = {24},
     number = {8},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2012_24_8_a5/}
}
TY  - JOUR
AU  - S. A. Andrianov
TI  - Description technique of relations between Euler's grid and Lagrange objects
JO  - Matematičeskoe modelirovanie
PY  - 2012
SP  - 97
EP  - 108
VL  - 24
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2012_24_8_a5/
LA  - ru
ID  - MM_2012_24_8_a5
ER  - 
%0 Journal Article
%A S. A. Andrianov
%T Description technique of relations between Euler's grid and Lagrange objects
%J Matematičeskoe modelirovanie
%D 2012
%P 97-108
%V 24
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2012_24_8_a5/
%G ru
%F MM_2012_24_8_a5
S. A. Andrianov. Description technique of relations between Euler's grid and Lagrange objects. Matematičeskoe modelirovanie, Tome 24 (2012) no. 8, pp. 97-108. http://geodesic.mathdoc.fr/item/MM_2012_24_8_a5/

[1] Sedov L. I., Mekhanika sploshnoi sredy, v. 1, Nauka, M., 1976 | Zbl

[2] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1982

[3] Sou S., Gidrodinamika mnogofaznykh sistem, Mir, M., 1971

[4] Buisroid R., Techenie gaza so vzveshennymi chastitsami, Mir, M., 1975

[5] Knut D., Iskusstvo programmirovaniya dlya EVM, v. 3, Sortirovka i poisk, Mir, M., 1978 | MR | Zbl

[6] Akho A., Khopkroft Dzh., Ulman Dzh., Postroenie i analiz vychislitelnykh algoritmov, Mir, M., 1979 | MR

[7] Virt N., Algoritmy i struktury dannykh, Nevskii dialekt, SPb., 2001

[8] Loitsyanskii L. G., Mekhanika zhidkosti i gaza, Nauka, M., 1973 | MR

[9] Khorguani V. G., Kalov Kh. M., “O padenii vysokokontsentrirovannoi sistemy grubodispersnykh aerozolnykh chastits v atmosfere”, Izv. AN SSSR, Fizika atmosfery i okeana, 11:3 (1975), 278–284