Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2012_24_7_a4, author = {A. M. Denisov and I. A. Pavelchak}, title = {A numerical method for determining the localized initial condition for some mathematical models of the heart excitation}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {59--66}, publisher = {mathdoc}, volume = {24}, number = {7}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2012_24_7_a4/} }
TY - JOUR AU - A. M. Denisov AU - I. A. Pavelchak TI - A numerical method for determining the localized initial condition for some mathematical models of the heart excitation JO - Matematičeskoe modelirovanie PY - 2012 SP - 59 EP - 66 VL - 24 IS - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2012_24_7_a4/ LA - ru ID - MM_2012_24_7_a4 ER -
%0 Journal Article %A A. M. Denisov %A I. A. Pavelchak %T A numerical method for determining the localized initial condition for some mathematical models of the heart excitation %J Matematičeskoe modelirovanie %D 2012 %P 59-66 %V 24 %N 7 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2012_24_7_a4/ %G ru %F MM_2012_24_7_a4
A. M. Denisov; I. A. Pavelchak. A numerical method for determining the localized initial condition for some mathematical models of the heart excitation. Matematičeskoe modelirovanie, Tome 24 (2012) no. 7, pp. 59-66. http://geodesic.mathdoc.fr/item/MM_2012_24_7_a4/
[1] FitzHugh R., “Mathematical models of threshold phenomena in the nerve membrane”, Bull. Math. Biophysics, 1955, no. 17, 257–278 | DOI
[2] FitzHugh R., “Impulses and physiological states in theoretical models of nerve membrane”, Biophysical J., 1961, no. 1, 445–466 | DOI | MR
[3] Nagumo J., Arimoto S., Yoshizawa S., “An active pulse transmission line simulating nerve axon”, Proc. IRE, 1962, no. 50, 2061–2070 | DOI
[4] Aliev R. R., Panfilov A. V., “A simple two-variable model of cardiac excitation”, Chaos Solutions and Fractals, 7:3 (1996), 293–301 | DOI
[5] Sundnes J., Lines G. T., Cai X. et al., Computing the Electrical Activity in the Heart, Springer, 2006, 311 pp. | MR | Zbl
[6] Elkin Yu. E., Moskalenko A. V., Starmer Ch. F., “Spontannaya ostanovka dreifa spiralnoi volny v odnorodnoi vozbudimoi srede”, Matematicheskaya biologiya i bioinformatika, 2:1 (2007), 73–81 | MR
[7] Medvedinskii A. B., Rusakov A. V., Moskalenko A. V. i dr., “Issledovanie avtovolnovykh mekhanizmov variabelnosti elektrokardiogramm vo vremya vysokochastotnykh aritmii: rezultaty matematicheskogo modelirovaniya”, Biofizika, 48:2 (2003), 314–323
[8] He Y., Keyes D. E., “Reconstructing parameters of the FitzHugh–Nagumo system from boundary potential measurements”, J. Comput. Neurosci., 23:2 (2007), 251–264 | DOI | MR
[9] Pavelchak I. A., Tuikina S. R., “Metod chislennogo resheniya obratnoi zadachi dlya modifitsirovannoi modeli Fitts-Khyu–Nagumo”, Prikladnaya matematika i informatika, 2011, no. 37, 98–106
[10] Pavelchak I. A., “Chislennyi metod opredeleniya lokalizovannogo nachalnogo usloviya v modelyakh Fitts-Khyu–Nagumo i Alieva–Panfilova”, Vestnik MGU. Vychislitelnaya matematika i kibernetika, 2011, no. 3, 7–13 | MR
[11] Titomir L. I., Kneppo L., Matematicheskoe modelirovanie bioelektricheskogo generatora serdtsa, Nauka, M., 1999, 447 pp.
[12] Denisov A. M., Kalinin V. V., “Obratnaya zadacha dlya matematicheskikh modelei vozbuzhdeniya serdtsa”, Zhurnal vychisl. matem. i matem. fiziki, 50:3 (2010), 539–543 | MR | Zbl