Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2012_24_7_a2, author = {I. Yu. Kudryashov and A. E. Lutsky}, title = {Adapting of the code, simulating viscous fluids flows, to a hybrid computing systems based on {CUDA-MPI}}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {33--44}, publisher = {mathdoc}, volume = {24}, number = {7}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2012_24_7_a2/} }
TY - JOUR AU - I. Yu. Kudryashov AU - A. E. Lutsky TI - Adapting of the code, simulating viscous fluids flows, to a hybrid computing systems based on CUDA-MPI JO - Matematičeskoe modelirovanie PY - 2012 SP - 33 EP - 44 VL - 24 IS - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2012_24_7_a2/ LA - ru ID - MM_2012_24_7_a2 ER -
%0 Journal Article %A I. Yu. Kudryashov %A A. E. Lutsky %T Adapting of the code, simulating viscous fluids flows, to a hybrid computing systems based on CUDA-MPI %J Matematičeskoe modelirovanie %D 2012 %P 33-44 %V 24 %N 7 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2012_24_7_a2/ %G ru %F MM_2012_24_7_a2
I. Yu. Kudryashov; A. E. Lutsky. Adapting of the code, simulating viscous fluids flows, to a hybrid computing systems based on CUDA-MPI. Matematičeskoe modelirovanie, Tome 24 (2012) no. 7, pp. 33-44. http://geodesic.mathdoc.fr/item/MM_2012_24_7_a2/
[1] Korneev V. V., “Podkhod k programmirovaniyu superkompyuterov na baze mnogoyadernykh multitredovykh kristallov”, Vychislitelnye metody i programmirovanie, 10 (2009), 123–128
[2] Kalyaev I. A., Levin I. I., “Semeistvo rekonfiguriruemykh vychislitelnykh sistem s vysokoi realnoi proizvoditelnostyu”, Vychislitelnye metody i programmirovanie, 10 (2009), 61–68
[3] Reiting Top500 http://www.top500.org
[4] Harten A., Lax P., van Leer B., “On upstream differencing and Godunov type methods for hyperbolic conservation laws”, SIAM review, 25:1 (1983), 35–61 | DOI | MR | Zbl
[5] Toro E. F., Spruce M., Speares W., “Restoration of the contact surface in the HLL-Riemann solver”, Shock Waves, 4:1 (1994), 25–34 | DOI | Zbl
[6] Kolgan V. P., “Primenenie printsipa minimalnykh znachenii proizvodnykh k postroeniyu konechno-raznostnykh skhem dlya rascheta razryvnykh reshenii gazovoi dinamiki”, Uchenye zapiski TsAGI, 3:6 (1972), 68–77
[7] Kudryashov I. Yu., Lutskii A. E., “Modelirovanie turbulentnogo otryvnogo transzvukovogo obtekaniya tel vrascheniya”, Matematicheskoe modelirovanie, 23:5 (2011), 71–80 | MR | Zbl
[8] Edwards J. R., Chandra S., “Comparison of Eddy Viscosity-Transport Turbulence Models for Three-Dimensional, Shock-Separated Flowfields”, AIAA Journal, 34:4 (1996), 756–763 | DOI
[9] Portland Group http://www.pgroup.com
[10] http://www.kiam.ru/MVS/resourses/k100.html
[11] Shur M., Spalart P. R., Strelets M., Travin A., “Detached-Eddy Simulation of an Airfoil at High Angle of Attack”, Engineering Turbulence Modelling and Experiments, 4 (1999), 669–678
[12] Sheldahl R. E., Klimas P. C., Aerodynamic Characteristics of Seven Airfoil Sections Through 180 Degrees Angle of Attack for Use in Aerodynamic Analysis of Vertical Axis Wind Turbines, SAND80–2114, Sandia National Laboratories, March 1981
[13] Gilling Lasse, Sorensen Niels N., Davidson Lars, Detached Eddy Simulations of an Airfoil in Turbulent Inflow, AIAA 2009-270
[14] Mann J., “Wind Field Simulation”, Probabilistic Engineering Mechanics, 13:4 (1998), 269–282 | DOI
[15] di Mare D., Klein M., Jones W. P., Janick J., “Synthetic turbulence inflow conditions for large eddy simulation”, Physics of Fluids, 2006