Bicomponent three-atomic linear chain model for interaction constants of Cu- and Ag- chalcogenides calculation
Matematičeskoe modelirovanie, Tome 24 (2012) no. 7, pp. 3-12.

Voir la notice de l'article provenant de la source Math-Net.Ru

A model for the calculation of interaction constants between the ions of crystal Cu- and Ag- chalcogenides, which is three-atomic linear-chain of ions, where one ion (chalkogen) has a deformed electronic shell is proposed. Numerical constants of interaction are obtained and it is shown that for those of them, which has superionic properties in even non-superionic state, a very small numerical values take place. Such tendency becomes apparent for the interaction constants of chalcogen ion and its electronic shell as well as for the interaction constants of the ions of chalcogen and metal.
Keywords: superionic, superionic conductivity
Mots-clés : anharmonic oscillations.
@article{MM_2012_24_7_a0,
     author = {E. S. Shikhovtseva and A. N. Mikolaychuk and O. V. Mikolaychuk},
     title = {Bicomponent three-atomic linear chain model for interaction constants of {Cu-} and {Ag-} chalcogenides calculation},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {3--12},
     publisher = {mathdoc},
     volume = {24},
     number = {7},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2012_24_7_a0/}
}
TY  - JOUR
AU  - E. S. Shikhovtseva
AU  - A. N. Mikolaychuk
AU  - O. V. Mikolaychuk
TI  - Bicomponent three-atomic linear chain model for interaction constants of Cu- and Ag- chalcogenides calculation
JO  - Matematičeskoe modelirovanie
PY  - 2012
SP  - 3
EP  - 12
VL  - 24
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2012_24_7_a0/
LA  - ru
ID  - MM_2012_24_7_a0
ER  - 
%0 Journal Article
%A E. S. Shikhovtseva
%A A. N. Mikolaychuk
%A O. V. Mikolaychuk
%T Bicomponent three-atomic linear chain model for interaction constants of Cu- and Ag- chalcogenides calculation
%J Matematičeskoe modelirovanie
%D 2012
%P 3-12
%V 24
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2012_24_7_a0/
%G ru
%F MM_2012_24_7_a0
E. S. Shikhovtseva; A. N. Mikolaychuk; O. V. Mikolaychuk. Bicomponent three-atomic linear chain model for interaction constants of Cu- and Ag- chalcogenides calculation. Matematičeskoe modelirovanie, Tome 24 (2012) no. 7, pp. 3-12. http://geodesic.mathdoc.fr/item/MM_2012_24_7_a0/

[1] Ivanov-Shits A. K., “Kompyuternoe modelirovanie superionnykh provodnikov. I: Anionnye provodniki”, Kristallografiya, 52 (2007), 131–143

[2] Ivanov-Shits A. K., “Kompyuternoe modelirovanie superionnykh provodnikov. II: Kationnye provodniki”, Kristallografiya, 52 (2007), 318–331

[3] Nogai A. S., Young Huh, Yugai K. N., “Ionnaya i superionnaya provodimost v NASICON-podobnykh strukturakh tipa $\mathrm{Na}_3\mathrm{Sc}_2(\mathrm{PO}_4)_3$”, Fizika tverdogo tela, 47 (2005), 1042–1047

[4] Pnevmatikos St., Flytzanis N., Remoissenet M., “Soliton dynamics of linear diatomic lattices”, Phys. Rev. B, 33 (1986), 2308–2321 | DOI

[5] Kovalev A. S., Usatenko O. V., Gorbach A. V., “Dvizhenie solitonov v modulirovannykh uprugikh sredakh”, Fizika tverdogo tela, 43 (2001), 1600–1608

[6] Gorbach A. V., Kovalev A. S., Usatenko O. V., “Solitony v dvukhatomnoi tsepochke s konkuriruyuschimi nelineinostyami”, Fizika tverdogo tela, 43 (2001), 2081–2090

[7] Wakamura K., “Interpretation of ionic conduction in superionic conductors based on electronic and phonon properties”, Solid State Ionics, 171 (2004), 229–235 | DOI

[8] Kurosh A. G., Kurs vysshei algebry, Lan, S.-Pb., 2006, 234–239

[9] Gurevich A. G., Fizika tverdogo tela, Nevskii dialekt, S.-Pb., 2004, 320 pp.

[10] Sakuma T., Shibata K., “Low-energy excitation in $\beta$-$\mathrm{Cu}_2\mathrm{Se}$”, J. Phys. Society of Japan, 58 (1989), 3061–3064 | DOI

[11] Yakshibaev R. A., Mukhamadeeva N. N., Kadrgulov R. F., “Phase Relation, ionic Transport and Diffusion in the Alloys of $\mathrm{Ag}_2\mathrm{Te}$-$\mathrm{Cu}_2\mathrm{Te}$”, Solid State Physics A, 121 (1990), 111–117 | DOI

[12] Grier B. H., Shapiro S. M., Cava R. J., “Inelastic neutron scattering measurements of diffusion in $\beta$-$\mathrm{Ag}_2\mathrm{S}$”, Physical Review B, 29 (1984), 3810–3814 | DOI

[13] Ebbsjo I., Vashishta P., Dejus R., Skold K., “Inelastic neutron scattering and dynamics of ions in the super-ionic conductor $\mathrm{Ag}_2\mathrm{S}$”, Journal of Physics C: Solid State Physics, 20:21 (1987), L441 | DOI

[14] Shapiro S. M., Reidinger F., Fizika superionnykh provodnikov, ed. M. B. Salamon, Zinatne, Riga, 1982, 95

[15] Berezin V. M., Vyatkin G. P., Superionnye poluprovodnikovye khalkogenidy, Izd-vo YuUrGu, Chelyabinsk, 2001, 135 pp.

[16] Bohnen K.-P., Heid R., Pintschovius L., “Ab initio lattice dynamics and thermal expansion of $\mathrm{Cu}_2\mathrm{O}$”, Physical Review B, 80 (2009), 134304 | DOI

[17] Prevot B., Carabatos C., “Dynamique du reseau de largentite $(\mathrm{Ag2O})$. Modele des ions rigides avec interaction coulombienne”, Journal De Physique, 32 (1971), 543–547 | DOI

[18] Sakuma T., Shibata K., Hoshino S., “Low-energy excitation in cooper-ion conductors”, Solid State Ionics, 40/41 (1990), 337 | DOI