Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2012_24_6_a0, author = {Genri E. Norman and Vladimir V. Stegailov}, title = {Stochastic theory of the classical molecular dynamics method}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {3--44}, publisher = {mathdoc}, volume = {24}, number = {6}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2012_24_6_a0/} }
Genri E. Norman; Vladimir V. Stegailov. Stochastic theory of the classical molecular dynamics method. Matematičeskoe modelirovanie, Tome 24 (2012) no. 6, pp. 3-44. http://geodesic.mathdoc.fr/item/MM_2012_24_6_a0/
[1] Alder B. J., Wainwright T. E., “Phase transition for a hard sphere system”, J. Chem. Phys., 27 (1957), 1208–1209 | DOI
[2] Wainwright T. E., Alder B. J., “Studies in Molecular Dynamics. I: General Method”, Chem. Phys., 31:2 (1959), 459–466 | MR
[3] Fisher I. Z., “Primenenie metoda Monte-Karlo v statisticheskoi fizike”, Uspekhi Fizicheskikh Nauk, 69:3 (1959), 349–369 | MR
[4] Fisher I. Z., Statisticheskaya teoriya zhidkostei, GIFML, M., 1961, 280 pp.
[5] Gibson J. B., Goland A. N., Milgram M., Vineyard G. H., “Dynamics of radiation damage”, Physical Review, 120 (1960), 1229–1253 | DOI
[6] Rahman A., “Correlations in the motion of atoms in liquid argon”, Physical Review, 136 (1964), A405–A411 | DOI
[7] Kadau K., Germann T. C., Lomdahl P. S., “Large-scale molecular-dynamics simulation of 19 billion particles”, International Journal of Modern Physics C, 15 (2004), 193–201 | DOI
[8] Germann T. C., Kadau K., “Trillion atom molecular dynamics simulation becomes a reality”, Int. J. Mod. Phys. C, 19 (2008), 1315–1319 | DOI | Zbl
[9] Polukhin V. A., Vatolin N. A., Modelirovanie amorfnykh metallov, Nauka, M., 1985, 288 pp.
[10] Allen M. P., Tildesley D. J., Computer Simulations of Liquids, Clarendon press, Oxford, 1989, 385 pp.
[11] Valuev A., Norman G., Podlipchuk V., “Metod molekulyarnoi dinamiki: teoriya i prilozheniya”, Matematicheskoe modelirovanie. Fiziko-khimicheskie svoistva veschestva, eds. A. A. Samarckii, N. N. Kalitkin, Nauka, M., 1989, 5–40
[12] Valuev A. A., Kaklyugin A. S., Norman G. E., “Molekulyarnoe modelirovanie khimicheskogo vzaimodeistviya atomov s poverkhnostyu”, Uspekhi Khimii, 64:7 (1995), 643–671
[13] Frenkel D., Smith B., Understanding Molecular Simulation: from Algorithms to Applications, Academic press, San Diego, 1996, 443 pp. | Zbl
[14] Belaschenko D. K., “Mekhanizmy diffuzii v neuporyadochennykh sistemakh (kompyuternoe modelirovanie)”, Uspekhi Fizicheskikh Nauk, 169 (1999), 361–384 | DOI
[15] Hoover W. G., Time Reversibility, Computer Simulation and Chaos, World Scientific, Singapore, 1999, 280 pp. | MR | Zbl
[16] Schlick T., Molecular Modeling and Simulation, Springer, New York, 2002, 656 pp. | MR
[17] Abraham F. F., “How fast can cracks move? a research adventure in materials failure using millions of atoms and big computers”, Advances in Physics, 52:8 (2003), 727–790 | DOI
[18] Rapaport D. C., The Art of Molecular Dynamics Simulation, Cambridge University Press, Cambridge, 2004, 564 pp.
[19] Rudyak V. Ya., Statisticheskaya aerogidromekhanika gomogennykh i geterogennykh sred, v. 1, Kineticheskaya teoriya, NGASU, Novosibirsk, 2004, 320 pp.
[20] Shaitan K. V., Tereshkina K. B., Molekulyarnaya dinamika belkov i peptidov, Oikos, M., 2004, 103 pp.
[21] S. Yip (ed.), Handbook of Materials Modeling, Springer, Berlin, 2005, 2965 pp.
[22] Hansen J.-P., McDonald I. R., Theory of Simple Liquids, Academic Press, New York, 2006, 428 pp.
[23] Hinchliffe A., Molecular Modelling for Beginners, Wiley, Chichester, 2008, 428 pp.
[24] Tuckerman M. E., Statistical Mechanics: Theory and Molecular Simulation, Oxford Graduate Texts, Oxford University Press, Oxford, 2010, 712 pp. | MR | Zbl
[25] Marx D., Hutter J., Ab Initio Molecular Dynamics: Basic Theory and Advanced Methods, Cambridge University Press, Cambridge, 2009, 578 pp. | Zbl
[26] Diaku F., Kholms F., Nebesnye vstrechi, RKhD, Moskva–Izhevsk, 2004, 304 pp.
[27] Kuzemskii A. L., http://theor.jinr.ru/kuzemsky/krylovbio.html
[28] Krylov N. S., Raboty po obosnovaniyu statisticheskoi fiziki, Izdatelstvo AN SSSR, Moskva–Leningrad, 1950, 208 pp.
[29] Shnol E. E., Chislennye eksperimenty s dvizhuschimisya molekulami, preprint No 88, IPM im. M. V. Keldysha AN SSSR, M., 1975, 35 pp.
[30] Norman G. E., “Stokhastiziruyuschii fon molekulyarnoi dinamiki”, Tezisy nauchnykh soobschenii V Vsesoyuznaya konferentsiya po stroeniyu i svoistvam metallicheskikh i shlakovykh rastvorov, v. I, Teoriya zhidkikh i amorfnykh metallov, UNTs AN SSSR, Sverdlovsk, 1983, 58–62
[31] Norman G. E., Stegailov V. V., “Stokhasticheskie svoistva molekulyarno-dinamicheskoi lenard-dzhonsovskoi sistemy v ravnovesnom i neravnovesnom sostoyaniyakh”, ZhETF, 119 (2001), 1011–1020
[32] Norman G. E., Stegailov V. V., “Stochastic and dynamic properties of molecular dynamics systems: Simple liquids, plasma and electrolytes, polymers”, Computer Physics Communications, 147 (2002), 678–683 | DOI | Zbl
[33] Stoddard S. D., Ford J., “Numerical experiments on the stochastic behavior of a Lennard–Jones gas system”, Phys. Rev. A, 8 (1973), 1504–1512 | DOI
[34] Dymnikov V. P., “O potentsialnoi predskazuemosti krupnomasshtabnykh atmosfernykh protsessov”, Izvestiya RAN. Fizika atmosfery i okeana, 40 (2004), 579–585 | MR
[35] Dymnikov V. P., Gritsun A. S., “Sovremennye problemy matematicheskoi teorii klimata”, Izvestiya RAN. Fizika atmosfery i okeana, 41 (2005), 294–314 | MR
[36] Dymnikov V. P., Ustoichivost i predskazuemost krupnomasshtabnykh atmosfernykh protsessov, IVM RAN, M., 2007, 280 pp.
[37] Wood W. W., Erpenbeck J. J., “Molecular dynamics and Monte Carlo calculations in statistical mechanics”, Annual Review of Physical Chemistry, 27 (1976), 319–348 | DOI
[38] Fox R. F., “Long-time tails and diffusion”, Phys. Rev. A, 27 (1983), 3216–3233 | DOI | MR
[39] Erpenbeck J. J., Wood W. W., “Molecular-dynamics calculations of the velocity autocorrelation function: Hard-sphere results”, Phys. Rev. A, 32 (1985), 412–422 | DOI
[40] Hoover W. G., Molecular dynamics, Lecture Notes in Physics, 258, Springer, Berlin–Heidelberg, 1986
[41] van Gunsteren W. F., “Classical molecular dynamics simulations: algorithms and applications, stochastic dynamics, and free energies”, Mathematical Frontiers in Computational Chemical Physics, ed. D. G. Truhler, Springer, New York, 1988, 136–156 | MR
[42] Norman G. E., Podlipchuk V. Y., Valuev A. A., “On the theory of the molecular dynamics method”, J. Moscow Phys. Soc., 2:1 (1992), 7–21
[43] Orban J., Bellemans A., “Velocity-inversion and irreversibility in a dilute gas of hard disks”, Physics Letters A, 24 (1967), 620–621 | DOI
[44] Prigogine I., “The microscopic meaning of irreversibility”, Z. Phys. Chemie Leipzig, 270 (1989), 477–490
[45] Mareshal M., Kestemont E., “Order and fluctuations in nonequilibrium molecular dynamics simulations of two-dimensional fluids”, Journal of Statistical Physics, 48 (1987), 1187–1201 | DOI
[46] Mareshal M., Kestemont E., “Experimental evidence for convective rolls in finite two-dimensional molecular models”, Nature, 329:6138 (1987), 427–429 | DOI
[47] Popper K. R., Unended quest. An Intellectual Autobiography, Fontana/Collins, Glasgow, 1978, 255 pp.
[48] Zaslavskii G. M., Stokhastichnost dinamicheskikh sistem, Nauka, M., 1984, 270 pp. | MR | Zbl
[49] Feynman R., The Character of Physical Law, Cox and Wyman Ltd., London, 1965
[50] Chirikov B. V., “Dinamicheskii khaos v klassicheskikh i kvantovykh sistemakh”, Uspekhi Fizicheskikh Nauk, 139:2 (1983), 360–363 | DOI
[51] Zaslavskii G. M., Fizika khaosa v gamiltonovykh sistemakh, Institut kompyuternykh issledovanii, Moskva–Izhevsk, 2004, 288 pp.
[52] Lebowitz J. L., “Microscopic origins of irreversible macroscopic behavior”, Physica A, 263 (1999), 516–527 | DOI | MR
[53] Ebeling W., “Prediction and entropy of nonlinear dynamical systems and symbolic sequences with lro”, Physica D, 109 (1997), 42–52 | DOI | Zbl
[54] Kuzemsky A. L., “Generalized kinetic and evolution equations in the approach of the nonequilibrium statistical operator”, International J. of Modern Physics, 19:6 (2007), 1029–1059 | DOI | MR
[55] Kuzemsky A. L., “Theory of transport processes and the methods of the nonequilibrium operator”, International J. of Modern Physics, 21:17 (2007), 2821–2949 | DOI | Zbl
[56] Evseev A. M., Frenkel M. Ya., Shinkarev A. N., “Metod molekulyarnoi dinamiki v teorii ravnovesnykh sostoyanii i neobratimykh protsessov”, Vestnik Moskovskogo universiteta. Khimiya, 11:2 (1970), 154–164 | MR
[57] Neiman I., Matematicheskie osnovy kvantovoi mekhaniki, Nauka, M., 1964, 337 pp. | MR
[58] Landau L. D., Lifshits E. M., Teoreticheskaya fizika, v. 5, Statisticheskaya fizika, Fizmatlit, M., 2001, 616 pp.
[59] Prigogine I., “Laws of nature, probability and time symmetry breaking”, Physica A, 263 (1999), 528–539 | DOI | MR
[60] Prigozhin I., Stengers I., Vremya, khaos, kvant, Progress, M., 1999, 266 pp.
[61] Kadomtsev B. B., Dinamika i informatsiya, Redaktsiya zhurnala UFN, M., 1999, 400 pp. | MR
[62] Landau L. D., Lifshits E. M., Teoreticheskaya fizika, v. III, Kvantovaya mekhanika (nerelyativistskaya teoriya), Fizmatlit, M., 2001, 808 pp.
[63] Neiman I., Matematicheskie osnovy kvantovoi mekhaniki, Nauka, M., 1964, 337 pp. | MR
[64] Kaklyugin A. S., Norman G. E., “O svyazi mezhdu neobratimostyu protsessa izmereniya v kvantovoi mekhanike i zakonom vozrastaniya entropii”, Termodinamika neobratimykh protsessov, ed. A. I. Lopushanskaya, Nauka, M., 1987, 5–11
[65] Kaklyugin A. S., Norman G. E., “Quantum corrections to the classical equations of motion”, J. Moscow Phys. Soc., 5:2 (1995), 223–238 | MR
[66] Kaklyugin A. S., Norman G. E., “The microscopic origin of macroscopic irreversibility: on the relation between entropy increase law and irreversibility of measurement process in quantum mechanics”, J. Moscow Phys. Soc. (Allerton Press, USA), 8:4 (1998), 283–290
[67] Kaklyugin A. S., Norman G. E., “On the Fluctuation and Dissipation”, Quantum Limits to the Second Law, American Institute of Physics Conference Series, 643, ed. D. P. Sheehan, 2002, 175–180 | MR
[68] Levesque D., Verlet L., “Molecular dynamics and time reversibility”, Journal of Statistical Physics, 72 (1993), 519–537 | DOI | Zbl
[69] Norman G. E., Podlipchuk V. Y., Valuev A. A., “Equation of motion and energy conservation in molecular dynamics”, Molecular Simulation, 9 (1993), 417–424 | DOI
[70] Loskutov A., “Chaotic dynamics of chemical systems”, Mathematical Methods in Contemporary Chemistry, ed. S. I. Kuchanov, Gordon and Breach, Amsterdam, 1996, 181–265
[71] Loskutov A. Yu., “Dinamicheskii khaos sistemy klassicheskoi mekhaniki”, Uspekhi Fizicheskikh Nauk, 177:9 (2007), 989–1015 | DOI
[72] Loskutov A. Yu., Mikhailov A. S., Osnovy teorii slozhnykh sistem, RKhD, Izhevsk, 2007, 612 pp.
[73] Daw M. S., Baskes M. I., “Embedded-atom metod: Derivation and application to impurities, surfaces and other defects in metals”, Phys. Rev. B, 29 (1984), 6443–6453 | DOI
[74] Finnis M. W., Sinclair J. E., “A simple empirical N-body potential for transition metals”, Phil. Mag. A, 50 (1984), 45–55 | DOI
[75] Stillinger F. H., Weber T. A., “Computer simulation of local order in condensed phases of silicon”, Phys. Rev. B, 31 (1985), 5262–5271 | DOI
[76] Ercolessi F., Parrinello M., Tosatti E., “Simulation of gold in the glue model”, Phil. Mag. A, 58 (1988), 213–226 | DOI
[77] Tersoff J., “New empirical approach to the structure and energy of covalent systems”, Phis. Rev. B, 37 (1988), 6991–7000 | DOI
[78] Lim H. S., Ong C. K., Ercolessi F., “Stability of face-centered cubic and icosahedral lead clusters”, Surface Science, 269/270 (1992), 1109–1115 | DOI
[79] Mishin Y., Mehl M. J., Papaconstantopoulos D. A., Voter A. F., Kress J. D., “Structural stability and lattice defects in copper: Ab initio, tight-binding, and embedded-atom calculations”, Phys. Rev. B, 63 (2001), 224106 | DOI
[80] Mendelev M. I., Han S., Srolovitz D. J., Ackland G. J., Sun D. Y., Asta M., “Development of new interatomic potentials appropriate for crystalline and liquid iron”, Phil. Mag., 83 (2003), 3977–3994 | DOI
[81] Belaschenko D. K., Kompyuternoe modelirovanie zhidkikh i amorfnykh veschestv, MISIS, M., 2005, 408 pp.
[82] Belaschenko D. K., “Primenenie modeli pogruzhennogo atoma k zhidkim metallam. Zhidkaya rtut”, Teplofizika vysokikh temperatur, 44:5 (2006), 682–692
[83] Belaschenko D. K., “Semeistva mezhmolekulyarnykh potentsialov, privodyaschikh k tozhdestvennym strukturam nekristallicheskikh tel v metode molekulyarnoi dinamiki”, Zhurnal fizicheskoi khimii, 78 (2004), 1621–1628
[84] Branicio P. S., Kalia R. K., Nakano A., Vashishta P., Shimojo F., Rino J. P., “Atomistic damage mechanisms during hypervelocity projectile impact on AlN: A large-scale parallel molecular dynamics simulation study”, Journal of the Mechanics and Physics of Solids, 56 (2008), 1955–1988 | DOI | Zbl
[85] Lopez-Marcos M. A., Sanz-Serna J. M., Diaz J. C., Are Gauss–Legendre methods useful in molecular dynamics?, J. Comput. Appl. Math., 67 (1996), 173–179 | DOI | MR | Zbl
[86] Lopez-Marcos M. A., Sanz-Serna J. M., Skeel R. D., “Explicit symplectic integrators using Hessian-vector products”, SIAM J. Sci. Comput., 18 (1997), 223–238 | DOI | MR | Zbl
[87] Stella L., Melchionna S., “Equilibration and sampling in molecular dynamics simulations of biomolecules”, J. Chem. Phys., 109 (1998), 10115 | DOI
[88] Zhou M., “A new look at the atomic level virial stress: on continuum-molecular system equivalence”, Proc. R. Soc. Lond. A, 459 (2003), 2347–2392 | DOI | Zbl
[89] Zimmerman J. A., Webb III E. B., Hoyt J. J., Jones R. E., Klein P. A., Bammann D. J., “Calculation of stress in atomistic simulation”, Modelling Simul. Mater. Sci. Eng., 12 (2004), S319–S332 | DOI
[90] Rudyak V. Ya., Belkin A. A., Ivanov D. A., Egorov V. V., “O neklassicheskoi diffuzii molekul zhidkostei i plotnykh gazov”, Doklady Akademii Nauk, 412 (2007), 490–493
[91] Rudyak V. Ya., Belkin A. A., Ivanov D. A., Egorov V. V., “Modelirovanie protsessov perenosa metodom molekulyarnoi dinamiki. Koeffitsient samodiffuzii”, Teplofizika Vysokikh Temperatur, 46 (2008), 35–44
[92] Rudyak V., Belkin A. A., “Nonclassical properties of molecular diffusion in liquids and dense gases”, Defect and Diffusion Forum, 273–276 (2008), 560–565 | DOI
[93] Fomin Y. D., Ryzhov V. N., “Water-like anomalies in the core-softened systems: Dependence on the trajectory in density-temperature plane”, Physics Letters A, 375 (2011), 2181–2184 | DOI
[94] Fomin Y. D., Tsiok E. N., Ryzhov V. N., “Complex phase behavior of the system of particles with smooth potential with repulsive shoulder and attractive well”, J. Chem. Phys., 134 (2011), 044523 | DOI
[95] Fomin Y. D., Ryzhov V. N., Gribova N. V., “Breakdown of excess entropy scaling for systems with thermodynamic anomalies”, Phys. Rev. E, 81 (2010), 061201 | DOI
[96] Polukhin V. A., Ukhov V. F., Dzugutov M. M., Kompyuternoe modelirovanie dinamiki i struktury zhidkikh metallov, Nauka, M., 1981, 324 pp.
[97] Morozov I. V., Norman G. E., “Stolknoveniya i plazmennye volny v neidealnoi plazme”, ZhETF, 127:2 (2005), 412–430
[98] Lankin A. V., Norman G. E., “Parnye fluktuatsii v neidealnoi plazme i ikh ogranichenie u poroga ionizatsii”, Teplofizika Vysokikh Temperatur, 46:2 (2008), 170–184
[99] Lankin A. V., Norman G. E., “Crossover from bound to free states in plasmas”, J. Phys. A.: Math. Gen., 42 (2009), 214032 | DOI
[100] Lankin A. V., Norman G. E., “Collisional recombination in strongly coupled plasmas”, J. Phys. A.: Math. Gen., 42 (2009), 214042 | DOI
[101] Lankin A., Norman G., Saitov I., “Pressure fluctuations in nonideal plasma”, Contrib. Plasma Phys., 50:1 (2010), 99–103 | DOI
[102] Kuksin A. Y., Morozov I. V., Norman G. E., Stegailov V. V., Valuev I. A., “Standard of molecular dynamics modelling and simulation of relaxation”, Molecular Simulation, 31 (2005), 1005–1017 | DOI
[103] Zamalin V. M., Norman G. E., Filinov B. C., Metod Monte-Karlo v statisticheskoi termodinamike, Nauka, M., 1977, 228 pp. | MR
[104] Valuev A. A., Norman G. E., “Metod molekulyarnoi dinamiki v teorii elektronnykh koeffitsientov perenosa neidealnoi plazmy”, Teplofizika Vysokikh Temper., 15 (1977), 689–694
[105] Lagarkov A. N., Sergeev V. M., “Metod molekulyarnoi dinamiki v statisticheskoi fizike”, Uspekhi Fizicheskikh Nauk, 125:3 (1978), 409–448
[106] Balesku R., Ravnovesnaya i neravnovesnaya statisticheskaya mekhanika, v. 2, Mir, M., 1978, 405 pp. | MR
[107] Zubarev D. N., Fizicheskaya entsiklopediya, v. 5, ed. A. M. Prokhorov, Nauchnoe izdatelstvo “Bolshaya Rossiiskaya entsiklopediya”, M., 1998, 625 pp.
[108] Heymann B., Grubmüller H., “Molecular dynamics force probe simulations of antibody/antigen unbinding: Entropic control and nonadditivity of unbinding forces”, Biophysical Journal, 81 (2001), 1295–1313 | DOI
[109] Turlei E. V., Shaitan K. V., Balabaev N. K., “Molekulyarnaya dinamika gidratirovannykh uglevodorodnykh membrannykh struktur”, Zhurnal Fizicheskoi Khimii, 79:8 (2005), 1448–1457
[110] Shaitan K. V., Tourleigh Y. V., Golik D. N., Kirpichnikov M. P., “Computer-aided molecular design of nanocontainers for inclusion and targeted delivery of bioactive compounds”, J. Drug Del. Sci. Tech., 16:4 (2006), 253–258
[111] Shaitan K. V., Li A., Terëshkina K. B., Kirpichnikov M. P., “Izuchenie pronitsaemosti kanala atsetilkholinovogo retseptora metodami molekulyarnoi dinamiki”, Biofizika, 52:3 (2007), 469–475
[112] Stegailov V. V., Yanilkin A. V., “Strukturnye prevrascheniya v monokristallicheskom zheleze pri udarno-volnovom szhatii i rastyazhenii. Issledovanie metodom molekulyarnoi dinamiki”, ZhETF, 131:6 (2007), 1064–1072
[113] Bazhirov T. T., Norman G. E., Stegailov V. V., “Cavitation in liquid metals under negative pressures. Molecuar dynamics modeling and simulation”, J. Phys.: Condensed Matter, 20:11 (2008), 114113 | DOI
[114] Valuev A. A., Norman G. E., Podlipchuk V. Yu., “Entropiya Krylova–Kolmogorova neuporyadochennykh lennard-dzhonsovskikh sistem”, Matematicheskoe modelirovanie, 2:5 (1990), 3–7 | Zbl
[115] Kuksin A. Yu., Norman G. E., Stegailov V. V., “Fazovaya diagramma i spinodalnyi raspad metastabilnykh sostoyanii lennard-dzhonsovskoi sistemy”, Teplofizika Vysokikh Temperatur, 45:1 (2007), 43–55 | MR
[116] Rowlands G., “A numerical algorithm for Hamiltonian systems”, J. Computational Physics, 97 (1991), 235–239 | DOI | MR | Zbl
[117] Morozov I. V., Norman G. E., Valuev A. A., “Stochastic properties of strongly coupled plasmas”, Phys. Rev. E, 63 (2001), 36405 | DOI
[118] Kravtsov Yu. A., “Fakticheskie granitsy gipotezy zamknutosti i klassicheskie paradoksy kineticheskoi teorii”, ZhETF, 96 (1989), 1661–1665
[119] Kravtsov Yu. A., “Sluchainost, determirovannost, predskazuemost”, UFN, 158 (1989), 93–122 | DOI | MR
[120] Kravtsov Yu. A., “Fundamentalnye i prakticheskie predely predskazuemosti”, Predely predskazuemosti, ed. Yu. A. Kravtsov, TsentrKom, M., 1997, 170–200
[121] Gertsenshtein M. E., Kravtsov Yu. A., “Ogranicheniya primenimosti nyutonovskogo opisaniya dvizheniya chastits v gaze vsledstvie spontannogo izlucheniya nizkochastotnykh fotonov”, ZhETF, 118 (2000), 761–763
[122] Klimontovich Yu. L., Statisticheskaya teoriya otkrytykh sistem, Yanus, M., 1995, 624 pp.
[123] Stegailov V. V., “Optimisation of neighbour list techniques and analysis of effects of round-off errors in molecular-dynamics calculations”, Beitraege zum Wissenschaftichen Rechnen, Ergebnisse des Gaststudentenprogramms 2002 des John von Neumann-Instituts fuer computing, ed. R. Esser, Central Institute for Applied Mathematics, Research Center Juelich, 2002, 73–86; Technical Report FZJ-ZAM-IB-2002-12
[124] Sutmann G., “Molecular dynamics — vision and reality”, Computational Nanoscience: Do It Yourself!, NIC Series, 31, eds. J. Grotendorst, S. Blügel, D. Marx, John von Neumann Institute for Computing, Jülich, 2006, 159–194
[125] Heerman D. W., Computer Simulation Methods in Theoretical Physics, Springer, Berlin, 1986, 148 pp.
[126] G. Ciccoti, W. G. Hoover (eds.), Molecular-Dynamics Smulation of Statistical-Mechanical Systems, North-Holland, Amsterdam, 1986, 610 pp. | MR
[127] Berendsen H. J. C., van Gunsteren W. F., “Practical algorithms for dynamical simulations”, Molecular-Dynamics Simulation of Statistical Mechanical Systems, Proc. Int. School of Physics “Enrico Fermi” (course 97), eds. G. Ciccotti, W. G. Hoover, North-Holland, Amsterdam, 1986, 43–65
[128] Grivtsov A. G., Yuschenko V. S., “Stokhastichnost i obratimost v molekulyarnoi fizike”, VI Vsesoyuznaya konferentsiya po stroeniyu i svoistvam metallicheskikh i shlakovykh rastvorov, Tezisy nauchnykh soobschenii, v. I, Teoriya zhidkikh i amorfnykh metallov, UNTs AN SSSR, Sverdlovsk, 1986, 52–55
[129] Zaslavskii G. M., Kirichenko N. A., Fizicheskaya entsiklopediya, v. 5, ed. A. M. Prokhorov, Nauchnoe izdatelstvo “Bolshaya Rossiiskaya entsiklopediya”, M., 1998, 397–402
[130] Laptyeva T. V., Flach S., Kladko K., “The weak-password problem: Chaos, criticality, and encrypted p-captchas”, 50007, EPL (Europhysics Letters), 95:5 (2011) | DOI
[131] Rudyak V. Ya., Kharlamov G. V., Belkin A. A., “Diffuziya nanochastits i makromolekul v plotnykh gazakh i zhidkostyakh”, TVT, 39 (2001), 283–291
[132] Sobol I. M., Chislennye metody Monte-Karlo, Nauka, M., 1978, 64 pp. | MR
[133] Yoshida H., “Construction of higher order symplectic integrators”, Physics Letters A, 150 (1990), 262–268 | DOI | MR
[134] Skeel R. D., Zhang G., Schlick T., “A family of symplectic integrators: stability, accuracy, and molecular dynamics applications”, SIAM J. Sci. Comput., 8:1 (1997), 203–222 | DOI | MR
[135] Faou E., Hairer E., Pham T.-L., “Energy conservation with non-symplectic methods: examples and counter-examples”, BIT Numerical Mathematics, 44:4 (2004), 699–709 | DOI | MR | Zbl
[136] Cottrel D., Tupper P. F., “Energy drift in molecular dynamics simulations”, BIT Numerical Mathematics, 47:3 (2007), 507–523 | DOI | MR | Zbl
[137] Hairer E., Lubich C., Wanner G., “Geometric numerical integration illustrated by the Stormer–Verlet method”, Acta Numerica, 12 (2003), 399–450 | DOI | MR | Zbl
[138] Jia Z., Leimkuhler B., “Geometric integrators for multiple time-scale simulation”, Journal of Physics A: Mathematical and General, 39:19 (2006), 5379 | DOI | MR | Zbl
[139] Kompaneets R., Vladimirov S. V., Ivlev A. V., Tsytovich V., Morfill G., “Dust clusters with non-Hamiltonian particle dynamics”, Phys. Plasmas, 13 (2006), 072104 | DOI | MR
[140] Norman G. E., Stegailov V. V., Timofeev A. V., “Abnormal kinetic energy of charged dust particles in plasmas”, ZhETF, 140 (2011)
[141] Norman G. E., Timofeev A. V., “Kinetic temperature of dust particle motion in gas-discharge plasma”, Phys. Rev. E, 84 (2011), 056401 | DOI
[142] Berri R. S., Smirnov B. M., “Fazovye perekhody v klasterakh razlichnykh tipov”, UFN, 179 (2009), 147 | DOI
[143] Yanilkin A. V., Zhilyaev P. A., Kuksin A. Yu., Norman G. E., Pisarev V. V., Stegailov V. V., “Primenenie superkompyuterov dlya molekulyarno-dinamicheskogo modelirovaniya protsessov v kondensirovannykh sredakh”, Vychislitelnye metody i programmirov., 11 (2010), 111–116
[144] Kaklyugin A. S., Norman G. E., “Iererkhicheskii podkhod — obobschenie vitalizma i reduktsionizma”, Rossiiskii khimicheskii zhurnal, 44:3 (2000), 7–20
[145] Norman G. E., Stegailov V. V., “O mikroskopicheskom proiskhozhdenii neobratimosti khimicheskikh reaktsii: model neobratimogo dinamicheskogo puti khimicheskoi reaktsii”, Rossiiskii khimicheskii zhurnal, 45:1 (2001), 9–11 | MR