Mathematical models of a hydraulic shock in a slightly viscous liquid
Matematičeskoe modelirovanie, Tome 24 (2012) no. 5, pp. 112-130.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present work are derive two mathematical models, describing the pressure distribution field in the layer near the borehole in process of the hydraulic fracturing. The derivation of the models is based on a rigorous homogenization of the exact mathematical model, governing on microscopic level the joint motion of an elastic solid skeleton and a viscous fluid filling the pores.
Keywords: hydraulic shock, Stokes and Lame's equations, two-scale convergence.
@article{MM_2012_24_5_a8,
     author = {A. M. Meirmanov and I. V. Nekrasova},
     title = {Mathematical models of a hydraulic shock in a slightly viscous liquid},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {112--130},
     publisher = {mathdoc},
     volume = {24},
     number = {5},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2012_24_5_a8/}
}
TY  - JOUR
AU  - A. M. Meirmanov
AU  - I. V. Nekrasova
TI  - Mathematical models of a hydraulic shock in a slightly viscous liquid
JO  - Matematičeskoe modelirovanie
PY  - 2012
SP  - 112
EP  - 130
VL  - 24
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2012_24_5_a8/
LA  - ru
ID  - MM_2012_24_5_a8
ER  - 
%0 Journal Article
%A A. M. Meirmanov
%A I. V. Nekrasova
%T Mathematical models of a hydraulic shock in a slightly viscous liquid
%J Matematičeskoe modelirovanie
%D 2012
%P 112-130
%V 24
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2012_24_5_a8/
%G ru
%F MM_2012_24_5_a8
A. M. Meirmanov; I. V. Nekrasova. Mathematical models of a hydraulic shock in a slightly viscous liquid. Matematičeskoe modelirovanie, Tome 24 (2012) no. 5, pp. 112-130. http://geodesic.mathdoc.fr/item/MM_2012_24_5_a8/

[1] Adachi J. I., Detournay E., Peirce A. P., “Analysis of the classical pseudo-3D model for hydraulic fracture with equilibrium height growth across stress barriers”, Int. J. of Rock Mechanics and Mining Sciences, 47 (2010), 625–630

[2] Kovalyshen Y., Detournay E., “A Reexamination of the Classical PKNModel of Hydraulic Fracture”, Transp. Porous Med., 81 (2010), 317–339

[3] Liang Weiguoab, Zhao Yangshenga, “A mathematical model for solid liquid and mass transfer coupling and numerical simulation for hydraulic fracture in rock salt”, Progress in Natural Science, 15:8 (2005), 742–748

[4] Garipov T. T., “Modelirovanie protsessa gidrorazryva plasta v porouprugoi srede”, Mat. modelirovanie, 18:6 (2006), 53–69 | MR | Zbl

[5] Meirmanov A. M., “Metod dvukhmasshtabnoi skhodimosti Nguetsenga v zadachakh filtratsii i seismoakustiki v uprugikh poristykh sredakh”, Sib. Mat. Zhurnal, 48:3 (2007), 645–667 | MR | Zbl

[6] Burridge R., Keller J. B., “Poroelasticity equations derived from microstructure”, Journal of Acoustic Society of America, 70:4 (1981), 1140–1146 | Zbl

[7] Conca C., “On the application of the homogenization theory to a class of problems arising in fluid mechanics”, J. math. pures et appl., 64 (1985), 31–75 | MR | Zbl

[8] Meirmanov A. M., “Vyvod uravnenii neizotermicheskoi akustiki v uprugikh poristykh sredakh”, Sib. Mat. Zhurnal, 51:1 (2010), 156–174 | MR | Zbl

[9] Nguetseng G., “A general convergence result for a functional related to the theory of homogenization”, SIAM J. Math. Anal., 20:3 (1989), 608–623 | MR | Zbl

[10] Nekrasova I. V., “Nekotorye modeli gidravlicheskogo udara v neftyanom plaste”, Sibirskii zhurnal industrialnoi matematiki, XIV:3(47) (2011), 79–86 | MR | Zbl

[11] Meirmanov A. M., “A description of seismic acoustic wave propagation in porous media via homogenization”, SIAM J. Math. Anal., 40:3 (2008), 1272–1289 | MR | Zbl