Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2012_24_5_a8, author = {A. M. Meirmanov and I. V. Nekrasova}, title = {Mathematical models of a hydraulic shock in a slightly viscous liquid}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {112--130}, publisher = {mathdoc}, volume = {24}, number = {5}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2012_24_5_a8/} }
TY - JOUR AU - A. M. Meirmanov AU - I. V. Nekrasova TI - Mathematical models of a hydraulic shock in a slightly viscous liquid JO - Matematičeskoe modelirovanie PY - 2012 SP - 112 EP - 130 VL - 24 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2012_24_5_a8/ LA - ru ID - MM_2012_24_5_a8 ER -
A. M. Meirmanov; I. V. Nekrasova. Mathematical models of a hydraulic shock in a slightly viscous liquid. Matematičeskoe modelirovanie, Tome 24 (2012) no. 5, pp. 112-130. http://geodesic.mathdoc.fr/item/MM_2012_24_5_a8/
[1] Adachi J. I., Detournay E., Peirce A. P., “Analysis of the classical pseudo-3D model for hydraulic fracture with equilibrium height growth across stress barriers”, Int. J. of Rock Mechanics and Mining Sciences, 47 (2010), 625–630
[2] Kovalyshen Y., Detournay E., “A Reexamination of the Classical PKNModel of Hydraulic Fracture”, Transp. Porous Med., 81 (2010), 317–339
[3] Liang Weiguoab, Zhao Yangshenga, “A mathematical model for solid liquid and mass transfer coupling and numerical simulation for hydraulic fracture in rock salt”, Progress in Natural Science, 15:8 (2005), 742–748
[4] Garipov T. T., “Modelirovanie protsessa gidrorazryva plasta v porouprugoi srede”, Mat. modelirovanie, 18:6 (2006), 53–69 | MR | Zbl
[5] Meirmanov A. M., “Metod dvukhmasshtabnoi skhodimosti Nguetsenga v zadachakh filtratsii i seismoakustiki v uprugikh poristykh sredakh”, Sib. Mat. Zhurnal, 48:3 (2007), 645–667 | MR | Zbl
[6] Burridge R., Keller J. B., “Poroelasticity equations derived from microstructure”, Journal of Acoustic Society of America, 70:4 (1981), 1140–1146 | Zbl
[7] Conca C., “On the application of the homogenization theory to a class of problems arising in fluid mechanics”, J. math. pures et appl., 64 (1985), 31–75 | MR | Zbl
[8] Meirmanov A. M., “Vyvod uravnenii neizotermicheskoi akustiki v uprugikh poristykh sredakh”, Sib. Mat. Zhurnal, 51:1 (2010), 156–174 | MR | Zbl
[9] Nguetseng G., “A general convergence result for a functional related to the theory of homogenization”, SIAM J. Math. Anal., 20:3 (1989), 608–623 | MR | Zbl
[10] Nekrasova I. V., “Nekotorye modeli gidravlicheskogo udara v neftyanom plaste”, Sibirskii zhurnal industrialnoi matematiki, XIV:3(47) (2011), 79–86 | MR | Zbl
[11] Meirmanov A. M., “A description of seismic acoustic wave propagation in porous media via homogenization”, SIAM J. Math. Anal., 40:3 (2008), 1272–1289 | MR | Zbl