Stability of ROW methods for non autonomous systems of ordinary differential equations
Matematičeskoe modelirovanie, Tome 24 (2012) no. 5, pp. 97-111.

Voir la notice de l'article provenant de la source Math-Net.Ru

Studying of $AN$-stability of $ROW$ methods has been done. Notion of $LN$-equivalence of difference schemes are introduced. Possibilities of construction of schemes with better stability properties for the linear non autonomous and nonlinear problems has been studied with the use of algebraically stable singly diagonally-implicit Runge–Kutta ($SDIRK$) methods. The impossibility of construction of $LN$-stable $ROW$ methods for numerical integration of stiff systems of ODE which are based on $SDIRK$ schemes is shown.
Keywords: Runge–Kutta methods and Rosenbrock schemes, $BN$- and $AN$-stability, algebraic stability.
@article{MM_2012_24_5_a7,
     author = {P. D. Shirkov},
     title = {Stability of {ROW} methods for non autonomous systems of ordinary differential equations},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {97--111},
     publisher = {mathdoc},
     volume = {24},
     number = {5},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2012_24_5_a7/}
}
TY  - JOUR
AU  - P. D. Shirkov
TI  - Stability of ROW methods for non autonomous systems of ordinary differential equations
JO  - Matematičeskoe modelirovanie
PY  - 2012
SP  - 97
EP  - 111
VL  - 24
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2012_24_5_a7/
LA  - ru
ID  - MM_2012_24_5_a7
ER  - 
%0 Journal Article
%A P. D. Shirkov
%T Stability of ROW methods for non autonomous systems of ordinary differential equations
%J Matematičeskoe modelirovanie
%D 2012
%P 97-111
%V 24
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2012_24_5_a7/
%G ru
%F MM_2012_24_5_a7
P. D. Shirkov. Stability of ROW methods for non autonomous systems of ordinary differential equations. Matematičeskoe modelirovanie, Tome 24 (2012) no. 5, pp. 97-111. http://geodesic.mathdoc.fr/item/MM_2012_24_5_a7/

[1] Khairer E., Norsett S., Vanner G., Reshenie obyknovennykh differentsialnykh uravnenii. Nezhestkie zadachi, Mir, M., 1990 | MR

[2] Khairer E., Vanner G., Reshenie obyknovennykh differentsialnykh uravnenii. Zhestkie i differentsialno-algebraicheskie zadachi, Mir, M., 1999

[3] Butcher J., The numerical Analysis of Ordinary Differential Equations. (Runge–Kutta and General Linear Methods), J. Wiley and Sons Ltd., Great Britain, 1987 | MR | Zbl

[4] Dekker K., Verver Ya., Ustoichivost metodov Runge–Kutty dlya zhestkikh nelineinykh differentsialnykh uravnenii, «Mir», M., 1988 | MR

[5] Rakitskii Yu. V., Ustinov S. M., Chernorutskii N. G., Chislennye metody resheniya zhestkikh sistem, Nauka, M., 1979 | MR

[6] Rosenbrock H., “Some general implicit processes for numerical solution of differential equations”, Computer J., 5:4 (1962/1963), 329–330 | MR

[7] Shirkov P. D., “$L$-ustoichivost diagonalno-neyavnykh skhem Runge–Kutty i metodov Rozenbroka”, Zh. vychisl. matem. i matem. fiz., 32:9 (1992), 1422–1432 | MR | Zbl

[8] Shirkov P. D., $AN$-ustoichivost ROW metodov, Preprint Instituta prikladnoi matematiki im. M. V. Keldysha RAN, No 16, 2001, 20 pp.

[9] Kalitkin N. N., Panchenko S. L., “Optimalnye skhemy dlya zhestkikh neavtonomnykh sistem”, Matem. modelirovanie, 11:6 (1999), 52–75 | MR

[10] Kochetkov K. A., Shirkov P. D., “$L$-zatukhayuschie ROW metody tretego poryadka tochnosti”, Zh. vych. matemat. i matem. fiz., 37:6 (1997), 699–710 | MR | Zbl

[11] Kochetkov K. A., Shirkov P. D., “$L$-zatukhayuschie ROW-metody s tochnoi otsenkoi lokalnoi pogreshnosti”, Matematicheskoe modelirovanie, 13:8 (2001), 38–43

[12] Shirkov P. D., Some topics about $L$-decrementation of one step methods, Preprint No 2/1994, The University of Trondheim, Norway, 1994, 13 pp.

[13] Butcher J., “A stability property of implicit Runge–Kutta methods”, BIT, 1975, no. 15, 358–361 | Zbl

[14] Burrage K., Butcher J., “Stability criteria for implicit Runge–Kutta methods”, SIAM J. Numer. Anal., 1979, no. 16, 46–57 | MR | Zbl

[15] Crouzeix M., “Sur la B-stabilite des methodes de Runge–Kutta”, Numer. Math., 1979, no. 32, 75–82 | MR | Zbl

[16] Noersett S., Semi-explicit Runge–Kutta methods, Report Mathematics and Computation, No 6/74, Department of Mathematics, University of Trondheim, 1974

[17] Alexander R., “Dioganaly implicit Runge–Kutta methods for stiff ODEs”, SIAM J. Numer. Anal., 14 (1977), 1006–1021 | MR | Zbl

[18] Skvortsov L. M., “Tochnost metodov Runge–Kutty pri reshenii zhestkikh zadach”, Zh. vych. matemat. i matem. fiz., 43:9 (2003), 1374–1384 | MR | Zbl

[19] Skvortsov L. M., “Svoistvo interpolyatsionnosti metodov Runge–Kutty pri reshenii zhestkikh zadach”, Matematicheskoe modelirovanie, 20:12 (2008), 119–128 | MR | Zbl

[20] Skvortsov L. M., “Prostoi sposob postroeniya dvukhshagovykh metodov Runge–Kutty”, Zh. vych. matemat. i matem. fiz., 49:11 (2009), 1920–1930 | MR | Zbl