Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2012_24_5_a5, author = {A. V. Khovanskiy}, title = {Development of block {\cyrs}ycling inversion method in computer tomography}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {65--80}, publisher = {mathdoc}, volume = {24}, number = {5}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2012_24_5_a5/} }
A. V. Khovanskiy. Development of block сycling inversion method in computer tomography. Matematičeskoe modelirovanie, Tome 24 (2012) no. 5, pp. 65-80. http://geodesic.mathdoc.fr/item/MM_2012_24_5_a5/
[1] A. V. Khovanskii, A. M. Demkin, “Metody blochno-tsiklicheskogo obrascheniya v kompyuternoi tomografii”, Matematicheskoe modelirovanie, 23:1 (2001), 51–64 | MR
[2] V. V. Voevodin, E. E. Tyrtyshnikov, Vychislitelnye protsessy s tëplitsevymi matritsami, Nauka, M., 1987, 320 pp. | MR | Zbl
[3] F. Natterer, Matematicheskie aspekty kompyuternoi tomografii, Mir, M., 1990, 280 pp. | MR | Zbl
[4] A. V. Likhachev, V. V. Pikalov, “Sintezirovannyi algoritm trekhmernoi tomografii”, Matematicheskoe modelirovanie, 10:1 (1998), 1–73 | MR
[5] V. V. Pikalov, I. G. Kazantsev, V. P. Golubyatnikov, Voprosy programmirovaniya, 7:2 (2006), 180–184
[6] A. N. Tikhonov, V. Ya. Arsenin, Metody resheniya nekorrektnykh zadach, Nauka, M., 1979, 288 pp. | MR
[7] A. N. Tikhonov, V. Ya. Arsenin, A. A. Timonov, Matematicheskie zadachi kompyuternoi tomografii, Nauka, M., 1987, 159 pp. | MR
[8] I. N. Troitskii, Statisticheskaya teoriya tomografii, Radio i svyaz, M., 1989, 239 pp. | MR
[9] D. K. Faddeev, V. N. Faddeeva, Vychislitelnye metody lineinoi algebry, Fizmatlit, M., 1963, 734 pp. | MR
[10] G. A. Fedorov, S. A. Tereschenko, Vychislitelnaya emissionnaya tomografiya, Energoatomizdat, M., 1990, 183 pp.
[11] G. Khermen, Vosstanovlenie izobrazhenii po proektsiyam: osnovy rekonstruktivnoi tomografii, Mir, M., 1983 | MR
[12] A. V. Khovanskii, “Metody postroeniya pochti adamarovykh tsirkulyantov i vozmozhnosti ikh prilozheniya”, Matematicheskoe modelirovanie, 8:1 (1996), 69–76 | MR
[13] A. V. Khovanskii, “Regulyarizovannyi algoritm Grevillya i ego primenenie v transmissionnoi kompyuternoi tomografii”, Matematicheskoe modelirovanie, 8:11 (1996), 109–118 | MR
[14] V. V. Pikalov, T. S. Melnikova, Nizkotemperaturnaya plazma, v. 13, Tomografiya plazmy, Nauka, Novosibirsk, 1995, 224 pp.
[15] I. Abaffi, E. Spedikato, Matematicheskie metody dlya lineinykh i nelineinykh uravnenii. Proektsionnye ABS-algoritmy, Mir, M., 1996, 268 pp. | MR
[16] G. Nolet (red.), Seismicheskaya tomografiya, Mir, M., 1990, 416 pp.
[17] R. Bleikhut, Bystrye algoritmy tsifrovoi obrabotki signalov, Mir, M., 1989 | MR
[18] V. Yu. Terebizh, Vvedenie v statisticheskuyu teoriyu obratnykh zadach, Fizmatlit, M., 2005, 375 pp.
[19] N. S. Bakhvalov, Chislennye metody, Nauka, M., 1975, 631 pp. | MR
[20] G. Kramer, Matematicheskie metody statistiki, Mir, M., 1975 | MR
[21] F. R. Gantmakher, Teoriya matrits, Nauka, M., 1967, 575 pp. | MR
[22] T. Kokhonen, Assotsiativnaya pamyat, Mir, M., 1980, 238 pp. | MR
[23] K. Brammer, G. Ziffling, Filtr Kalmana–Byusi, Nauka, M., 1982, 199 pp.