Multiscale modeling of elastic composite materials
Matematičeskoe modelirovanie, Tome 24 (2012) no. 5, pp. 3-20.

Voir la notice de l'article provenant de la source Math-Net.Ru

A new homogenization method for periodical multiscale hierarchical structures is proposed. The method allows to obtain effective elastic properties of composite materials with multiscale hierarchical inner structure. Recurrent consequences of local and averaged elastic problems for series of periodicity cells are formulated. Multiscale finite element analysis for local problems was carried out. Computed results of multiscale analysis for the two-scale model of textile composite material are presented.
Keywords: multiscale homogenization method, finite element analysis, effective elastic properties of composite materials.
@article{MM_2012_24_5_a0,
     author = {Yu. I. Dimitrienko and A. P. Sokolov},
     title = {Multiscale modeling of elastic composite materials},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {3--20},
     publisher = {mathdoc},
     volume = {24},
     number = {5},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2012_24_5_a0/}
}
TY  - JOUR
AU  - Yu. I. Dimitrienko
AU  - A. P. Sokolov
TI  - Multiscale modeling of elastic composite materials
JO  - Matematičeskoe modelirovanie
PY  - 2012
SP  - 3
EP  - 20
VL  - 24
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2012_24_5_a0/
LA  - ru
ID  - MM_2012_24_5_a0
ER  - 
%0 Journal Article
%A Yu. I. Dimitrienko
%A A. P. Sokolov
%T Multiscale modeling of elastic composite materials
%J Matematičeskoe modelirovanie
%D 2012
%P 3-20
%V 24
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2012_24_5_a0/
%G ru
%F MM_2012_24_5_a0
Yu. I. Dimitrienko; A. P. Sokolov. Multiscale modeling of elastic composite materials. Matematičeskoe modelirovanie, Tome 24 (2012) no. 5, pp. 3-20. http://geodesic.mathdoc.fr/item/MM_2012_24_5_a0/

[1] V. V. Vasilev, Yu. M. Tarnopolskii (red.), Kompozitsionnye materialy, Spravochnik, Mashinostroenie, M., 1989, 510 pp.

[2] Kristensen R., Vvedenie v mekhaniku kompozitov, Mir, M., 1982, 335 pp.

[3] Malmeister A. K., Tamuzh V. P., Teters G. A., Soprotivlenie polimernykh i kompozitnykh materialov, Zinatne, Riga, 1980, 572 pp.

[4] Vanin G. A., Mikromekhanika kompozitsionnykh materialov, Naukova dumka, Kiev, 1985, 300 pp.

[5] Sendetski Dzh., Mekhanika kompozitsionnykh materialov, Mir, M., 1978, 563 pp.

[6] Tarnopolskii Yu. M., Zhigun I. G., Polyakov V. A., Prostranstvenno-armirovannye kompozitsionnye materialy, Mashinostroenie, M., 1987, 225 pp.

[7] Bakhvalov N. S., Panasenko G. P., Osrednenie protsessov v periodicheskikh sredakh, Nauka, M., 1984, 352 pp. | MR | Zbl

[8] Pobedrya B. E., Mekhanika kompozitsionnykh materialov, MGU, M., 1984, 336 pp.

[9] Sanches-Palensiya E., Neodnorodnye sredy i teoriya kolebanii, Mir, M., 1984, 471 pp. | MR

[10] Dimitrienko Yu. I., Mekhanika kompozitsionnykh materialov pri vysokikh temperaturakh, Mashinostroenie, M., 1997, 356 pp.

[11] Dimitrienko Yu. I., Kashkarov A. I., “Raschet effektivnykh kharakteristik kompozitov s periodicheskoi strukturoi metodom konechnykh elementov”, Vestnik MGTU im. N. E. Baumana. Estestvennye nauki, 2002, no. 2, 95–108

[12] Dimitrienko Yu. I., Sokolov A. P., Metod konechnogo elementa dlya resheniya lokalnykh zadach mekhaniki kompozitsionnykh materialov, Uch. posobie, Izd-vo MGTU im. N. E. Baumana, M., 2010, 66 pp.

[13] Dimitrienko Yu. I., Sokolov A. P., “Ob uprugikh svoistvakh kompozitsionnykh materialov”, Matematicheskoe modelirovanie, 21:4 (2009), 96–110

[14] Dimitrienko Yu. I., Tenzornoe ischislenie, Vysshaya shkola, M., 2001, 575 pp.