Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2012_24_4_a5, author = {A. D. Savel'ev}, title = {Applications of high order differenses in aerodynamical simulations}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {80--94}, publisher = {mathdoc}, volume = {24}, number = {4}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2012_24_4_a5/} }
A. D. Savel'ev. Applications of high order differenses in aerodynamical simulations. Matematičeskoe modelirovanie, Tome 24 (2012) no. 4, pp. 80-94. http://geodesic.mathdoc.fr/item/MM_2012_24_4_a5/
[1] Tolstykh A. I., “Multioperatornye skhemy proizvolnogo poryadka, ispolzuyuschie netsentrirovannye kompaktnye approksimatsii”, Dokl. RAN, 366:3 (1999), 319–322 | MR | Zbl
[2] Lele S. K., “Compact finite difference schemes with spectral-like resolution”, J. Comput. Phys., 102 (1992), 16–42 | DOI | MR
[3] Visbal M. R., Gaitonde D. V., “On the use of high-order finite-difference schemes on curvilinear and deforming meshes”, J. Comput. Phys., 181 (2002), 155–185 | DOI | MR | Zbl
[4] Bogey C., Bailly C., “A family of low dispersive and low dissipative explicit schemes for noise computations”, J. Comput. Phys., 194 (2004), 194–214 | DOI | Zbl
[5] Yee H. C., Sandham N. D., Djomehri M. J., “Low-dissipative high-order shock-capturing methods using characteristic-based filters”, J. Comput. Phys., 150 (1999), 199–238 | DOI | MR | Zbl
[6] Tolstykh A. I., “Development of arbitrary-order multioperators-based schemes for parallel calculations. 1: Higher-than-fifth-order approximations to convection terms”, J. Comput. Physics, 225 (2007), 2333–2353 | DOI | MR | Zbl
[7] Menter F. R., Zonal two equation k-$\omega$ turbulence models for aerodynamic flows, AIAA Paper 93-2906, 1993, 21 pp.
[8] Loitsyanskii L. G., Mekhanika zhidkosti i gaza, Nauka, M., 1987, 840 pp. | MR
[9] Steger Zh. L., “Neyavnyi konechno-raznostnyi metod dlya rascheta dvumernogo techeniya okolo tel proizvolnoi formy”, Raketnaya tekhnika i kosmonavtika, 16:7 (1978), 51–60
[10] A. D. Savelev, “Sostavnye kompaktnye skhemy vysokogo poryadka dlya modelirovaniya techenii vyazkogo gaza”, Zh. vychisl.matem. i matem. fiz., 47:8 (2007), 1389–1403 | MR
[11] Pulliam T. H., “Artificial dissipation models for the Euler equations”, AIAA Journal, 24:12, 1931–1940 | Zbl
[12] Lipavskii M. V., Tolstykh A. I., “Multioperatornye kompaktnye skhemy 5-go i 7-go poryadkov”, Zh. vychisl. matem. i matem. fiz., 43:7 (2003), 1018–1034 | MR | Zbl
[13] Steger J. L., Warming R. F., “Flux vector splitting in the inviscid gas dynamic equations with applications to finite difference methods”, J. Comput. Physics, 40 (1981), 263–293 | DOI | MR | Zbl
[14] Savelev A. D., “O strukture vnutrennei dissipatsii sostavnykh kompaktnykh skhem dlya resheniya zadach vychislitelnoi gazovoi dinamiki”, Zh. vychisl. matem. i matem. fiz., 49:12 (2009), 2232–2246 | MR
[15] Amiet R. K., “Noise due to turbulent flow past a trailing edge”, J. of sound and vibration, 47:3 (1976), 387–393 | DOI
[16] Marsden O., Bogey C., Bailly C., “High-order curvilinear simulations of flows around non-cartesian bodies”, J. of comput. acoustics, 13:4 (2005), 731–748 | DOI | Zbl