Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2012_24_4_a0, author = {A. K. Abramyan and L. V. Mirantsev and A. Yu. Kuchmin}, title = {Modeling of processes at {Couette} simple fluid flow in flat nano-scopic canal}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {3--21}, publisher = {mathdoc}, volume = {24}, number = {4}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2012_24_4_a0/} }
TY - JOUR AU - A. K. Abramyan AU - L. V. Mirantsev AU - A. Yu. Kuchmin TI - Modeling of processes at Couette simple fluid flow in flat nano-scopic canal JO - Matematičeskoe modelirovanie PY - 2012 SP - 3 EP - 21 VL - 24 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2012_24_4_a0/ LA - ru ID - MM_2012_24_4_a0 ER -
%0 Journal Article %A A. K. Abramyan %A L. V. Mirantsev %A A. Yu. Kuchmin %T Modeling of processes at Couette simple fluid flow in flat nano-scopic canal %J Matematičeskoe modelirovanie %D 2012 %P 3-21 %V 24 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2012_24_4_a0/ %G ru %F MM_2012_24_4_a0
A. K. Abramyan; L. V. Mirantsev; A. Yu. Kuchmin. Modeling of processes at Couette simple fluid flow in flat nano-scopic canal. Matematičeskoe modelirovanie, Tome 24 (2012) no. 4, pp. 3-21. http://geodesic.mathdoc.fr/item/MM_2012_24_4_a0/
[1] Rostami A. A., Mujumdar A. S., Saniei N., “Flow and heat transfer for gas flowing in microchannels: a review”, Heat Mass Transfer, 38 (2002), 359–367 | DOI
[2] Darhuber A. A., Troian S. M., “Principles of microfluidic actuation by modulation of surface stresses”, Annu. Rev. Fluid. Mech., 37 (2005), 425–455 | DOI | MR | Zbl
[3] Israelachvili J. N., McGuiggan P. M., Homoda A. M., “Dynamic Properties of Molecularly Thin Liquid Films”, Science, 240 (1988), 189–191 | DOI
[4] Israelachvili J., McGuiggan G. E. E., Gee M., Homoda A., Robbins M., Thomson P. J., “Liquid dynamics in molecularly thin films”, Phys. Condens. Matter, 2 (1990), SA89–SA98 | DOI
[5] Israelachvili J., Intermolecular and surface forces, 2nd edn., Academic Press, New York, 1992, 300 pp.
[6] Vinogradova O. I., “Slippage of water over hydrophobic surfaces”, Int. J. Miner Process, 56 (1999), 31–60 | DOI
[7] Gourdon D., Israelachvili J. N., “Transitions between smooth and complex stick slip sliding of surfaces”, Phys. Rev. E, 68:2 (2003), 021602, 1–10 | DOI
[8] Gao J., Luedtke W. D., Gourdon D., Ruths M., Israelachvili J. N., Landman U., “Frictional Forces and Amontons' Law: From the Molecular to the Macroscopic Scale”, J. Phys. Chem. B, 108:11 (2004), 3410–3425 | DOI
[9] Bureau L., Arvengas A., “Drainage of a nanoconfined simple fluid: Rate effects on squeeze-out dynamics”, Phys. Rev. E, 78:6 (2008), 061501, 1–11 | DOI
[10] Majumder M., Chopra N., Andrews R., Hinds B., Nature, 2005, no. 438, 44 | DOI
[11] Holt J. K., Park H. D., Wang Y., Stadermann M., Artyukhin A. B., Grigoropoulos C. P., Noy A., Bakajin O., “Fast mass transport through sub-2-nanometer carbon nanotubes”, Science, 312 (2006), 1034 | DOI
[12] Thomson P. A., Robbins M. O., “Shear flow near solids: Epitaxial order and flow boundary conditions”, Phys. Rev. A, 41:12 (1990), 6830–6837 | DOI
[13] Koplik J., Banavar J. R., Willemsen J. F., “Molecular dynamics of fluid flow at solid Surfaces”, Phys. Fluids A, 1:5 (1989), 781–794 | DOI
[14] Bocquet L., Barrat J.-L., “Hydrodynamic boundary conditions, correlation functions, and Kubo relations for confined fluids”, Phys. Rev. E, 49:4 (1994), 3079–3092 | DOI
[15] Thomson P. A., Troian S. M., “A general boundary condition for liquid flow at solid surfaces”, Nature (London), 389 (1997), 360–362 | DOI
[16] Gao J., Luedtke W. D., Landman U., “Layering Transitions and Dynamics of Confined Liquid Films”, Phys. Rev. Lett., 79:4 (1997), 705–708 | DOI
[17] Barrat J.-L., Bocquet L., “Large Slip Effect at a Nonwetting Fluid-Solid Interface”, Phys. Rev. Lett., 82:23 (1999), 4671–4674 | DOI
[18] Barrat J.-L., Bocquet L., “Influence of wetting properties on hydrodynamic boundary conditions at a fluid/solid interface”, Faraday Discuss, 112 (1999), 119–128 | DOI
[19] Cieplak M., Koplik J., Banavar J. R., “Boundary conditions at a fluid — solid interface”, Phys. Rev. Lett., 86:5 (2001), 803–806 | DOI
[20] Ziarani A. S., Mohamad A. A., “A molecular dynamics study of perturbed Poiseuille flow in a nanochannel”, Microfluid Nanofluid, 2 (2005), 12–20 | DOI
[21] Priezjev N. V., “Rate-dependent slip boundary conditions for simple fluids”, Phys. Rev. E, 75:5 (2007), 051605, 1–6 | DOI
[22] Soong S. Y., Yen T. H., Tzeng P. Y., “Molecular dynamics simulation of nanochannel flows with effects of wall lattice-fluid interactions”, Phys. Rev. E, 76:3 (2007), 036303, 1–14 | DOI | MR
[23] Allen M. P., Tildesly D. J., Computer Simulations of Liquids, Clarendon Press, Oxford, 1989, 408 pp.
[24] Ashurst W. T., Hoover W. G., “Argon Shear Viscosity via a Lennard–Jones Potential with Equilibrium and Nonequilibrium Molecular Dynamics”, Phys. Rev. Lett., 1973, no. 31, 206–209 | DOI
[25] Werder T., Walther J. H., Jaffe R. L., Halicoglu T., Koumoutsakos P., “On the Water-Carbon Interaction for Use in Molecular Dynamics Simulations of Graphite and Carbon Nanotubes”, J. Phys. Chem. B, 2003, no. 107, 1345 | DOI
[26] Korn G. A., Korn T. M., Spravochnik po matematike dlya nauchnykh rabotnikov i inzhenerov, Nauka, M., 1974, 832 pp. | MR
[27] Dyakonov V. P., Abramenkova I. V., MATLAB. Obrabotka signalov i izobrazhenii. Spetsialnyi spravochnik, Piter, S.-Pb., 2002, 608 pp.
[28] Smolentsev N. K., Osnovy teorii veivletov. Veivlety v MATLAB, DMK Press, M., 2005, 304 pp.
[29] Louis A. K., Maab P., Rieder A., Wavelet Theory and Applications, John Wiley Sons Press, Chichester, 1997 | Zbl