Modeling of processes at Couette simple fluid flow in flat nano-scopic canal
Matematičeskoe modelirovanie, Tome 24 (2012) no. 4, pp. 3-21.

Voir la notice de l'article provenant de la source Math-Net.Ru

Methods of molecular dynamics and signal analysis have been used for detailed investigation of processes occurring in nano-scopic canals through which the Couette flow of a simple fluid passes. The flows in the flat canal with both crystalline and amorphous walls have been studied. Interactions between the fluid atoms as well as between the fluid atoms and the wall atoms have been simulated using the Lennard–Jones potential. Velocity profiles of the fluid flow through the canal with crystalline walls and the canal with amorphous walls have been found; besides, the frictional force time dependences at various velocities of the moving walls have been obtained. Fourier and wavelet analysis of those dependences have been performed to reveal the friction force components corresponding to various physical processes taking place in the fluid. It has been shown that the time dependence revealed in the Couette flow passing through the canal with crystalline walls accounts for the existence of a periodical structure induced by the walls and for the wave processes occurring across the canal. Also, periodical processes of originating a zone of the initial periodical structure destruction and of its revivification have been revealed.
Keywords: nano-channel, molecular dynamics simulation.
Mots-clés : Couette flow
@article{MM_2012_24_4_a0,
     author = {A. K. Abramyan and L. V. Mirantsev and A. Yu. Kuchmin},
     title = {Modeling of processes at {Couette} simple fluid flow in flat nano-scopic canal},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {3--21},
     publisher = {mathdoc},
     volume = {24},
     number = {4},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2012_24_4_a0/}
}
TY  - JOUR
AU  - A. K. Abramyan
AU  - L. V. Mirantsev
AU  - A. Yu. Kuchmin
TI  - Modeling of processes at Couette simple fluid flow in flat nano-scopic canal
JO  - Matematičeskoe modelirovanie
PY  - 2012
SP  - 3
EP  - 21
VL  - 24
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2012_24_4_a0/
LA  - ru
ID  - MM_2012_24_4_a0
ER  - 
%0 Journal Article
%A A. K. Abramyan
%A L. V. Mirantsev
%A A. Yu. Kuchmin
%T Modeling of processes at Couette simple fluid flow in flat nano-scopic canal
%J Matematičeskoe modelirovanie
%D 2012
%P 3-21
%V 24
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2012_24_4_a0/
%G ru
%F MM_2012_24_4_a0
A. K. Abramyan; L. V. Mirantsev; A. Yu. Kuchmin. Modeling of processes at Couette simple fluid flow in flat nano-scopic canal. Matematičeskoe modelirovanie, Tome 24 (2012) no. 4, pp. 3-21. http://geodesic.mathdoc.fr/item/MM_2012_24_4_a0/

[1] Rostami A. A., Mujumdar A. S., Saniei N., “Flow and heat transfer for gas flowing in microchannels: a review”, Heat Mass Transfer, 38 (2002), 359–367 | DOI

[2] Darhuber A. A., Troian S. M., “Principles of microfluidic actuation by modulation of surface stresses”, Annu. Rev. Fluid. Mech., 37 (2005), 425–455 | DOI | MR | Zbl

[3] Israelachvili J. N., McGuiggan P. M., Homoda A. M., “Dynamic Properties of Molecularly Thin Liquid Films”, Science, 240 (1988), 189–191 | DOI

[4] Israelachvili J., McGuiggan G. E. E., Gee M., Homoda A., Robbins M., Thomson P. J., “Liquid dynamics in molecularly thin films”, Phys. Condens. Matter, 2 (1990), SA89–SA98 | DOI

[5] Israelachvili J., Intermolecular and surface forces, 2nd edn., Academic Press, New York, 1992, 300 pp.

[6] Vinogradova O. I., “Slippage of water over hydrophobic surfaces”, Int. J. Miner Process, 56 (1999), 31–60 | DOI

[7] Gourdon D., Israelachvili J. N., “Transitions between smooth and complex stick slip sliding of surfaces”, Phys. Rev. E, 68:2 (2003), 021602, 1–10 | DOI

[8] Gao J., Luedtke W. D., Gourdon D., Ruths M., Israelachvili J. N., Landman U., “Frictional Forces and Amontons' Law: From the Molecular to the Macroscopic Scale”, J. Phys. Chem. B, 108:11 (2004), 3410–3425 | DOI

[9] Bureau L., Arvengas A., “Drainage of a nanoconfined simple fluid: Rate effects on squeeze-out dynamics”, Phys. Rev. E, 78:6 (2008), 061501, 1–11 | DOI

[10] Majumder M., Chopra N., Andrews R., Hinds B., Nature, 2005, no. 438, 44 | DOI

[11] Holt J. K., Park H. D., Wang Y., Stadermann M., Artyukhin A. B., Grigoropoulos C. P., Noy A., Bakajin O., “Fast mass transport through sub-2-nanometer carbon nanotubes”, Science, 312 (2006), 1034 | DOI

[12] Thomson P. A., Robbins M. O., “Shear flow near solids: Epitaxial order and flow boundary conditions”, Phys. Rev. A, 41:12 (1990), 6830–6837 | DOI

[13] Koplik J., Banavar J. R., Willemsen J. F., “Molecular dynamics of fluid flow at solid Surfaces”, Phys. Fluids A, 1:5 (1989), 781–794 | DOI

[14] Bocquet L., Barrat J.-L., “Hydrodynamic boundary conditions, correlation functions, and Kubo relations for confined fluids”, Phys. Rev. E, 49:4 (1994), 3079–3092 | DOI

[15] Thomson P. A., Troian S. M., “A general boundary condition for liquid flow at solid surfaces”, Nature (London), 389 (1997), 360–362 | DOI

[16] Gao J., Luedtke W. D., Landman U., “Layering Transitions and Dynamics of Confined Liquid Films”, Phys. Rev. Lett., 79:4 (1997), 705–708 | DOI

[17] Barrat J.-L., Bocquet L., “Large Slip Effect at a Nonwetting Fluid-Solid Interface”, Phys. Rev. Lett., 82:23 (1999), 4671–4674 | DOI

[18] Barrat J.-L., Bocquet L., “Influence of wetting properties on hydrodynamic boundary conditions at a fluid/solid interface”, Faraday Discuss, 112 (1999), 119–128 | DOI

[19] Cieplak M., Koplik J., Banavar J. R., “Boundary conditions at a fluid — solid interface”, Phys. Rev. Lett., 86:5 (2001), 803–806 | DOI

[20] Ziarani A. S., Mohamad A. A., “A molecular dynamics study of perturbed Poiseuille flow in a nanochannel”, Microfluid Nanofluid, 2 (2005), 12–20 | DOI

[21] Priezjev N. V., “Rate-dependent slip boundary conditions for simple fluids”, Phys. Rev. E, 75:5 (2007), 051605, 1–6 | DOI

[22] Soong S. Y., Yen T. H., Tzeng P. Y., “Molecular dynamics simulation of nanochannel flows with effects of wall lattice-fluid interactions”, Phys. Rev. E, 76:3 (2007), 036303, 1–14 | DOI | MR

[23] Allen M. P., Tildesly D. J., Computer Simulations of Liquids, Clarendon Press, Oxford, 1989, 408 pp.

[24] Ashurst W. T., Hoover W. G., “Argon Shear Viscosity via a Lennard–Jones Potential with Equilibrium and Nonequilibrium Molecular Dynamics”, Phys. Rev. Lett., 1973, no. 31, 206–209 | DOI

[25] Werder T., Walther J. H., Jaffe R. L., Halicoglu T., Koumoutsakos P., “On the Water-Carbon Interaction for Use in Molecular Dynamics Simulations of Graphite and Carbon Nanotubes”, J. Phys. Chem. B, 2003, no. 107, 1345 | DOI

[26] Korn G. A., Korn T. M., Spravochnik po matematike dlya nauchnykh rabotnikov i inzhenerov, Nauka, M., 1974, 832 pp. | MR

[27] Dyakonov V. P., Abramenkova I. V., MATLAB. Obrabotka signalov i izobrazhenii. Spetsialnyi spravochnik, Piter, S.-Pb., 2002, 608 pp.

[28] Smolentsev N. K., Osnovy teorii veivletov. Veivlety v MATLAB, DMK Press, M., 2005, 304 pp.

[29] Louis A. K., Maab P., Rieder A., Wavelet Theory and Applications, John Wiley Sons Press, Chichester, 1997 | Zbl