Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2012_24_3_a8, author = {N. N. Kalitkin and L. V. Kuzmina}, title = {On the {Craig} method convergency for linear algebraic systems}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {113--136}, publisher = {mathdoc}, volume = {24}, number = {3}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2012_24_3_a8/} }
N. N. Kalitkin; L. V. Kuzmina. On the Craig method convergency for linear algebraic systems. Matematičeskoe modelirovanie, Tome 24 (2012) no. 3, pp. 113-136. http://geodesic.mathdoc.fr/item/MM_2012_24_3_a8/
[1] Faddeev D. K., Faddeeva V. N., Vychislitelnye metody lineinoi algebry, Fizmatgiz, M., 1960 | MR
[2] Samarskii A. A., Nikolaev E. S., Metody resheniya setochnykh uravnenii, Nauka. Fizmatlit, M., 1978, 592 pp. | MR
[3] Craig E., “The N-step iteration procedures”, J. Math. and Phys., 34:1 (1955), 64–73 | MR | Zbl
[4] Abramov A. A., Ulyanova V. I., Yukhno L. F., “O primenenii metoda Kreiga k resheniyu lineinykh uravnenii s netochno zadannymi iskhodnymi dannymi”, ZhVMiMF, 42:12 (2002), 1763–1770 | MR | Zbl
[5] Kalitkin N. N., Yukhno L. F., Kuzmina L. V., “Kriterii obuslovlennosti sistem algebraicheskikh uravnenii”, DAN, 434:4 (2010), 464–467 | MR | Zbl
[6] Kalitkin N. N., Yukhno L. F., Kuzmina L. V., “Kolichestvennyi kriterii obuslovlennosti sistem lineinykh algebraicheskikh uravnenii”, Matemat. modelirovanie, 23:2 (2011), 3–26 | MR | Zbl
[7] Kalitkin N. N., Kuzmina L. V., “Uluchshennaya forma metoda sopryazhennykh gradientov”, Matematicheskoe modelirovanie, 23:7 (2011), 33–51 | MR | Zbl
[8] Yukhno L. F., “Modifikatsiya nekotorykh metodov tipa sopryazhennykh napravlenii dlya resheniya sistem lineinykh algebraicheskikh uravnenii”, ZhVMiMF, 47:11 (2007), 1811–1818 | MR
[9] Kalitkin N. N., Kuzmina L. V., “Ob approksimatsii neortogonalnymi sistemami”, Matematicheskoe modelirovanie, 16:3 (2004), 95–108 | MR | Zbl