Measurement of atomic clusters integral characteristics in computer simulation
Matematičeskoe modelirovanie, Tome 24 (2012) no. 3, pp. 97-112.

Voir la notice de l'article provenant de la source Math-Net.Ru

The numerical method is proposed for measurement in computer simulations integral characteristics of atomic clusters. It is assumed that characteristic has the form of an integral of arbitrary function over the cluster volume. As an example the method for shape measurement based on the global features of an object, namely, its geometrical moments is described. For equilibrium atomic clusters with interparticle interaction described by Lennard–Jones potential general trends in their form variation with number of particles in cluster are studied. It is shown that the proposed method for such clusters correctly reproduces the size oscillations and the sequence of magic numbers.
Keywords: computer simulation, atomic cluster, moment-of-inertia tensor, nanophysics.
@article{MM_2012_24_3_a7,
     author = {A. I. Kul'ment'ev},
     title = {Measurement of atomic clusters integral characteristics in computer simulation},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {97--112},
     publisher = {mathdoc},
     volume = {24},
     number = {3},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2012_24_3_a7/}
}
TY  - JOUR
AU  - A. I. Kul'ment'ev
TI  - Measurement of atomic clusters integral characteristics in computer simulation
JO  - Matematičeskoe modelirovanie
PY  - 2012
SP  - 97
EP  - 112
VL  - 24
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2012_24_3_a7/
LA  - ru
ID  - MM_2012_24_3_a7
ER  - 
%0 Journal Article
%A A. I. Kul'ment'ev
%T Measurement of atomic clusters integral characteristics in computer simulation
%J Matematičeskoe modelirovanie
%D 2012
%P 97-112
%V 24
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2012_24_3_a7/
%G ru
%F MM_2012_24_3_a7
A. I. Kul'ment'ev. Measurement of atomic clusters integral characteristics in computer simulation. Matematičeskoe modelirovanie, Tome 24 (2012) no. 3, pp. 97-112. http://geodesic.mathdoc.fr/item/MM_2012_24_3_a7/

[1] Pauly H., Atom, Molecule, and Cluster Beams: Cluster Beams, Fast and Slow Beams, Accessory Equipment and Applications, Springer, Berlin, 2000, 376 pp. | Zbl

[2] Taylor K. J., Pettiette-Hall C. L., Cheshnovsky O., Smalley R. E., “Ultraviolet photoelectron spectra of coinage metal clusters”, J. Chem. Phys., 96 (1992), 3319–3329 | DOI

[3] Berri R. S., Smirnov B. M., “Fazovye perekhody v klasterakh razlichnykh tipov”, UFN, 179:2 (2009), 147–177 | DOI

[4] Makarov G. N., “Kineticheskie metody opredeleniya temperatury klasterov i nanochastits v molekulyarnykh puchkakh”, UFN, 181:4 (2011), 365–387 | DOI

[5] Kulmentev A. I., “Opisanie poverkhnosti kompaktnykh nanoob'ektov”, Matem. modelirovanie, 23:4 (2011), 57–68

[6] Sobol I. M., Chislennye metody Monte-Karlo, Nauka, M., 1973, 312 pp. | MR

[7] Kalitkin H. H., Chislennye metody, Nauka, M., 1978, 512 pp. (Glava 4, § 4) | MR

[8] Press W. H., Teukolsky S. A., Vetterling W. T., Flannery B. P., Numerical recipes in Fortran 77. The art of scientific computing, Cambridge University Press, Cambridge, 1992, 438 pp. | MR

[9] Khamayseh A., Kuprat A., “Deterministic point inclusion methods for computational applications with complex geometry”, Computational Science Discovery, 1 (2008), 015004 | DOI | MR

[10] Kendall D. G., “The diffusion of shape”, Advances in Applied Probability, 1977, no. 9, 428–430 | DOI

[11] Lo C.-H., Don H.-S., “3-d moments forms: Their construction and application to object identification and positioning”, IEEE Trans. Pattern Anal. Machine Intell., 11:10 (1989), 1053–1064 | DOI

[12] MacSleyne J. P., Simmons J. P., De Graef M., “On the use of moment invariants for the automated analysis of 3D particle shapes”, Modelling and Simulation in Materials Science and Engineering, 16:4 (2008), 045008 | DOI

[13] Wales D. J., Doye J. P. K., Dullweber A., Hodges M. P., Naumkin F. Y., Calvo F., Hernandez-Rojas J., Middleton T. F., The Cambridge Cluster Database, http://www-wales.ch.cam.ac.uk/CCD.html

[14] Gvishiani A. D., Diaman M., Mikhailov V. O., Galdeano A., Agayan S. M., Bogoutdinov Sh. R., Graeva E. M., “Algoritmy iskusstvennogo intellekta dlya klasterizatsii magnitnykh anomalii”, Fizika Zemli, 2002, no. 7, 13–28