Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2012_24_3_a6, author = {V. N. Popov and M. Yu. Tsivinskiy and Yu. S. Tsivinskaya}, title = {A numerical evaluation of the effect of surface-active component in the melt on the convective mass transfer during the metal surface melting by the laser impulse}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {87--96}, publisher = {mathdoc}, volume = {24}, number = {3}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2012_24_3_a6/} }
TY - JOUR AU - V. N. Popov AU - M. Yu. Tsivinskiy AU - Yu. S. Tsivinskaya TI - A numerical evaluation of the effect of surface-active component in the melt on the convective mass transfer during the metal surface melting by the laser impulse JO - Matematičeskoe modelirovanie PY - 2012 SP - 87 EP - 96 VL - 24 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2012_24_3_a6/ LA - ru ID - MM_2012_24_3_a6 ER -
%0 Journal Article %A V. N. Popov %A M. Yu. Tsivinskiy %A Yu. S. Tsivinskaya %T A numerical evaluation of the effect of surface-active component in the melt on the convective mass transfer during the metal surface melting by the laser impulse %J Matematičeskoe modelirovanie %D 2012 %P 87-96 %V 24 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2012_24_3_a6/ %G ru %F MM_2012_24_3_a6
V. N. Popov; M. Yu. Tsivinskiy; Yu. S. Tsivinskaya. A numerical evaluation of the effect of surface-active component in the melt on the convective mass transfer during the metal surface melting by the laser impulse. Matematičeskoe modelirovanie, Tome 24 (2012) no. 3, pp. 87-96. http://geodesic.mathdoc.fr/item/MM_2012_24_3_a6/
[1] Vedenov A. A., Gladush G. G., Fizicheskie protsessy pri lazernoi obrabotke materialov, Energoatomizdat, M., 1985, 208 pp.
[2] He X., Fuerschbach P. W., DebRoy T., “Heat transfer and fluid flow during laser spot welding of 304 stainless steel”, J. Phys. D: Appl. Phys., 36 (2003), 1388–1398 | DOI
[3] Uglov A. A., Smurov I. Yu., Taguirov K. I., Guskov A. G., “Simulation of unsteady-state thermocapillary mass transfer for laser doping of metals”, Int. J. Heat Mass. Transfer, 35:4 (1992), 783–793 | DOI
[4] Smurov I., Covelli L., Tagirov K., Aksenov L., “Peculiarities of pulse laser alloying: Influence of spatial distribution of the beam”, J. Appl. Phys., 71:7 (1992), 3147–3158 | DOI
[5] Sahoo P., DebRoy T., Mcnallan M. J., “Surface tension of binary metal-surface active solute systems under conditions relevant to welding metallurgy”, Metall. Trans. B, 19 (1988), 483–491 | DOI | MR
[6] Ehlen G., Ludwig A., Sahm P. R., “Simulation of Time-Dependent Pool Shape during Laser Spot Welding: Transient Effects”, Metallurgical and Materials Transactions A, 34 (2003), 2947–2961 | DOI
[7] Kawai Ya., “Diffusion of Slufur in Liquid Iron. I: Diffusion in Pure Iron”, Science reports of the Research Institutes, Tohoku University. Ser. A, Physics, chemistry and metallurgy, 9 (1957), 78–83
[8] Harlow F. H., Welch J. E., “Numerical calculation of time-depend viscous incompressible flow of fluid with free surface”, Phys. Fluids, 8 (1965), 2182–2189 | DOI | Zbl
[9] Patankar S. V., Spalding D. B., “A Calculation Procedure for Heat, Mass and Momentum Transfer in Three-Dimensional Parabolic Flows”, Int. J. Heat Mass Trans., 15 (1972), 1787–1806 | DOI | Zbl
[10] Chorin A. J., “A numerical method for solving incompressible viscous flow problems”, J. Comput. Phys., 2 (1967), 12–26 | DOI | Zbl
[11] Samarskii A. A., Nikolaev E. S., Metody resheniya setochnykh uravnenii, Nauka, M., 1978, 592 pp. | MR