Modified Zalka--Wiesner scheme for quantum systems simulation
Matematičeskoe modelirovanie, Tome 24 (2012) no. 2, pp. 109-119.

Voir la notice de l'article provenant de la source Math-Net.Ru

The method of quantum many particle systems simulation is built, which rests on the modification of known simulating quantum algorithm of Zalka and Wiesner. It is proved that for any positive $\epsilon$ there exists the algorithm, which gives the state of the quantum system in the instant $t$ after $t^{1+\epsilon}$ iterations, each of which is the action of simple Hamiltonian that comes from the main system Hamiltonian by the simple transformation depending on $\epsilon$. In general, the algorithm requires exponential memory of the total number of particles, though it makes possible to find the state in almost real time mode. This method of simulation exceeds the explicit scheme of finite differences and its accuracy is close to the implicit one. Its adventage is that the process of photon emission-absorption can be easily included to the model. Numerical experiments for one dimension problems are performed on this scheme that give interference picture for the colliding of two Gaussians and Rabi oscillations for a particle in two holes potential.
Keywords: quantum dynamics, Shroedinger equation, quantum system simulation, quantum algorithms.
@article{MM_2012_24_2_a6,
     author = {Yu. I. Ozhigov},
     title = {Modified {Zalka--Wiesner} scheme for quantum systems simulation},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {109--119},
     publisher = {mathdoc},
     volume = {24},
     number = {2},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2012_24_2_a6/}
}
TY  - JOUR
AU  - Yu. I. Ozhigov
TI  - Modified Zalka--Wiesner scheme for quantum systems simulation
JO  - Matematičeskoe modelirovanie
PY  - 2012
SP  - 109
EP  - 119
VL  - 24
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2012_24_2_a6/
LA  - ru
ID  - MM_2012_24_2_a6
ER  - 
%0 Journal Article
%A Yu. I. Ozhigov
%T Modified Zalka--Wiesner scheme for quantum systems simulation
%J Matematičeskoe modelirovanie
%D 2012
%P 109-119
%V 24
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2012_24_2_a6/
%G ru
%F MM_2012_24_2_a6
Yu. I. Ozhigov. Modified Zalka--Wiesner scheme for quantum systems simulation. Matematičeskoe modelirovanie, Tome 24 (2012) no. 2, pp. 109-119. http://geodesic.mathdoc.fr/item/MM_2012_24_2_a6/

[1] R. Feynman, “Simulating physics with computers”, J. Theoret. Phys., 21 (1982), 467–488 | DOI | MR

[2] P. Benioff, “Quantum mechanical hamiltonian models of Turing machines”, J. Stat. Phys., 29 (1982), 515–546 | DOI | MR | Zbl

[3] K.S. Arakelov, Yu.I. Ozhigov, “Assotsiatsiya dvukhatomnykh molekul. Modelirovanie cherez otbor kvantovykh sostoyanii”, Vestnik MGU, Seriya Vychislitelnaya matematika i kibernetika, 105:11 (2009), 203–215

[4] Yu.I. Ozhigov, A.Yu. Ozhigov, “Algorithmic container for physics” (Quantum Theory, Reconsideration of Foundations), AIP Conference Proceedings, 962, 168–174 | DOI | MR | Zbl

[5] Y. Ozhigov, “Lower bounds of a quantum search for an extreme point”, Proc. Roy. Soc. Lond., A455 (1999), 2165–2172 | MR | Zbl

[6] Y.I. Ozhigov, “Quantum Computers Speed Up Classical with Probability Zero”, Chaos Solitons Fractals, 10 (1999), 1707–1714 | DOI | MR | Zbl

[7] Y. Ozhigov, “How behavior of systems with sparse spectrum can be predicted on a quantum computer”, Pis'ma v JETP, 76:11, 799–804

[8] Yu.I. Ozhigov, Konstruktivnaya fizika, RKhD, Moskva-Izhevsk, 2010

[9] C. Zalka, “Efficient Simulation of Quantum Systems by Quantum Computers”, Proc. Roy. Soc. Lond., A454 (1998), 313–322 | MR | Zbl

[10] S. Wiesner, arXiv: quant-ph/9603028