Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2012_24_1_a3, author = {E. L. Kuznetsova}, title = {Modeling of heat transfer in the nonlinear anisotropic space using the analytic solution}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {46--54}, publisher = {mathdoc}, volume = {24}, number = {1}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2012_24_1_a3/} }
TY - JOUR AU - E. L. Kuznetsova TI - Modeling of heat transfer in the nonlinear anisotropic space using the analytic solution JO - Matematičeskoe modelirovanie PY - 2012 SP - 46 EP - 54 VL - 24 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2012_24_1_a3/ LA - ru ID - MM_2012_24_1_a3 ER -
E. L. Kuznetsova. Modeling of heat transfer in the nonlinear anisotropic space using the analytic solution. Matematičeskoe modelirovanie, Tome 24 (2012) no. 1, pp. 46-54. http://geodesic.mathdoc.fr/item/MM_2012_24_1_a3/
[1] Formalev V. F., “Teplomassoperenos v anizotropnykh telakh. Obzor”, Teplofizika vysokikh temperatur, 39:5 (2001), 810–832
[2] Lykov A. V., Teoriya teploprovodnosti, Vysshaya shkola, M., 1967, 599 pp.
[3] Tishkin V. F., Favorskii A. P., Shashkov M. Yu., “Variatsionno-raznostnye skhemy dlya uravnenii teploprovodnosti na neregulyarnykh setkakh”, DAN SSSR, 246:6 (1980)
[4] Samarskii A. A., Galaktionov V. A., Kurdyumov S. P., Mikhailov A. P., Rezhimy s obostreniem v zadachakh dlya kvazilineinykh parabolicheskikh uravnenii, Nauka, M., 1987, 490 pp.
[5] Shashkov A. G., Bubnov V. A., Yanovskii S. Yu., Volnovye yavleniya teploprovodnosti, Editorial URSS, M., 2004, 290 pp.
[6] Sobolev S. L., “Protsessy perenosa i beguschie volny v lokalno-neravnovesnykh sistemakh”, Uspekhi fizicheskikh nauk, 161:3 (1991), 5–29
[7] Maxwell S.C., Phil. Trans. Roy. Soc., London, 157 (1867), 49 | DOI