Modeling of heat transfer in the nonlinear anisotropic space using the analytic solution
Matematičeskoe modelirovanie, Tome 24 (2012) no. 1, pp. 46-54.

Voir la notice de l'article provenant de la source Math-Net.Ru

Quasi-linear parabolic equation with boundary condition of the first kind in origin of coordinates is solved for the anisotropic space where heat conductivity tensor’s components have power dependence from temperature. Analysis of the solution has show a wave type and finite speed of the diffusion of heat in the anisotropic space as opposed to infinite speed of case parabolic type linear equation. It is shown that the heat wave’s front in the anisotropic space likes ellipse in case of a plane and likes ellipsoid in case of space. The domains of power law where the solution exists have been investigated. Results are discussed.
Keywords: wave heat transfer, nonlinear anisotropic space, heat conductivity tensor, analytic solution, heat flow, heat wave, heat conductivity, nonlinear problem.
@article{MM_2012_24_1_a3,
     author = {E. L. Kuznetsova},
     title = {Modeling of heat transfer in the nonlinear anisotropic space using the analytic solution},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {46--54},
     publisher = {mathdoc},
     volume = {24},
     number = {1},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2012_24_1_a3/}
}
TY  - JOUR
AU  - E. L. Kuznetsova
TI  - Modeling of heat transfer in the nonlinear anisotropic space using the analytic solution
JO  - Matematičeskoe modelirovanie
PY  - 2012
SP  - 46
EP  - 54
VL  - 24
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2012_24_1_a3/
LA  - ru
ID  - MM_2012_24_1_a3
ER  - 
%0 Journal Article
%A E. L. Kuznetsova
%T Modeling of heat transfer in the nonlinear anisotropic space using the analytic solution
%J Matematičeskoe modelirovanie
%D 2012
%P 46-54
%V 24
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2012_24_1_a3/
%G ru
%F MM_2012_24_1_a3
E. L. Kuznetsova. Modeling of heat transfer in the nonlinear anisotropic space using the analytic solution. Matematičeskoe modelirovanie, Tome 24 (2012) no. 1, pp. 46-54. http://geodesic.mathdoc.fr/item/MM_2012_24_1_a3/

[1] Formalev V. F., “Teplomassoperenos v anizotropnykh telakh. Obzor”, Teplofizika vysokikh temperatur, 39:5 (2001), 810–832

[2] Lykov A. V., Teoriya teploprovodnosti, Vysshaya shkola, M., 1967, 599 pp.

[3] Tishkin V. F., Favorskii A. P., Shashkov M. Yu., “Variatsionno-raznostnye skhemy dlya uravnenii teploprovodnosti na neregulyarnykh setkakh”, DAN SSSR, 246:6 (1980)

[4] Samarskii A. A., Galaktionov V. A., Kurdyumov S. P., Mikhailov A. P., Rezhimy s obostreniem v zadachakh dlya kvazilineinykh parabolicheskikh uravnenii, Nauka, M., 1987, 490 pp.

[5] Shashkov A. G., Bubnov V. A., Yanovskii S. Yu., Volnovye yavleniya teploprovodnosti, Editorial URSS, M., 2004, 290 pp.

[6] Sobolev S. L., “Protsessy perenosa i beguschie volny v lokalno-neravnovesnykh sistemakh”, Uspekhi fizicheskikh nauk, 161:3 (1991), 5–29

[7] Maxwell S.C., Phil. Trans. Roy. Soc., London, 157 (1867), 49 | DOI