Training artificial neural networks with dynamic particle swarm optimisation
Matematičeskoe modelirovanie, Tome 24 (2012) no. 12, pp. 107-112

Voir la notice de l'article provenant de la source Math-Net.Ru

Particle swarm optimisation has been successfully applied to train artificial feedforward neural networks before, however, considered problems were assumed to be static. Such assumption does not hold for many real-world problems. This article investigates the applicability of dynamic particle swarm optimisation algorithms as neural network training algorithms for dynamic classification problems. The performance of dynamic particle swarm optimization is compared to back-propagation, and dynamic particle swarm optimisation is shown to be a viable training algorithm for dynamic classification problems.
Keywords: artificial neural networks, supervised training, dynamic environments.
Mots-clés : particle swarm optimisation
@article{MM_2012_24_12_a17,
     author = {A. S. Rakitianskaia and A. P. Engelbrecht},
     title = {Training artificial neural networks with dynamic particle swarm optimisation},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {107--112},
     publisher = {mathdoc},
     volume = {24},
     number = {12},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2012_24_12_a17/}
}
TY  - JOUR
AU  - A. S. Rakitianskaia
AU  - A. P. Engelbrecht
TI  - Training artificial neural networks with dynamic particle swarm optimisation
JO  - Matematičeskoe modelirovanie
PY  - 2012
SP  - 107
EP  - 112
VL  - 24
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2012_24_12_a17/
LA  - ru
ID  - MM_2012_24_12_a17
ER  - 
%0 Journal Article
%A A. S. Rakitianskaia
%A A. P. Engelbrecht
%T Training artificial neural networks with dynamic particle swarm optimisation
%J Matematičeskoe modelirovanie
%D 2012
%P 107-112
%V 24
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2012_24_12_a17/
%G ru
%F MM_2012_24_12_a17
A. S. Rakitianskaia; A. P. Engelbrecht. Training artificial neural networks with dynamic particle swarm optimisation. Matematičeskoe modelirovanie, Tome 24 (2012) no. 12, pp. 107-112. http://geodesic.mathdoc.fr/item/MM_2012_24_12_a17/