Adaptation for GPU of numerical algorithms for dinamic filtration processes in percolation grids
Matematičeskoe modelirovanie, Tome 24 (2012) no. 12, pp. 78-85.

Voir la notice de l'article provenant de la source Math-Net.Ru

The methods for adaptation of numerical algorithms for modeling of oil displacement using Dynamic percolation model (DPM) under CUDA architecture are presented.
Keywords: oil displacement, GPU, CUDA, percolation, RNG
Mots-clés : Monte-Carlo.
@article{MM_2012_24_12_a13,
     author = {M. N. Voroniuk and M. V. Iakobovski},
     title = {Adaptation for {GPU} of numerical algorithms for dinamic filtration processes in percolation grids},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {78--85},
     publisher = {mathdoc},
     volume = {24},
     number = {12},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2012_24_12_a13/}
}
TY  - JOUR
AU  - M. N. Voroniuk
AU  - M. V. Iakobovski
TI  - Adaptation for GPU of numerical algorithms for dinamic filtration processes in percolation grids
JO  - Matematičeskoe modelirovanie
PY  - 2012
SP  - 78
EP  - 85
VL  - 24
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2012_24_12_a13/
LA  - ru
ID  - MM_2012_24_12_a13
ER  - 
%0 Journal Article
%A M. N. Voroniuk
%A M. V. Iakobovski
%T Adaptation for GPU of numerical algorithms for dinamic filtration processes in percolation grids
%J Matematičeskoe modelirovanie
%D 2012
%P 78-85
%V 24
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2012_24_12_a13/
%G ru
%F MM_2012_24_12_a13
M. N. Voroniuk; M. V. Iakobovski. Adaptation for GPU of numerical algorithms for dinamic filtration processes in percolation grids. Matematičeskoe modelirovanie, Tome 24 (2012) no. 12, pp. 78-85. http://geodesic.mathdoc.fr/item/MM_2012_24_12_a13/

[1] S. S. Lapushkin, M. Kh. Brenerman, M. V. Yakobovskii, “Modelirovanie dinamicheskikh protsessov filtratsii v perkolyatsionnykh reshetkakh na vysokoproizvoditelnykh vychislitelnykh sistemakh”, Matematicheskoe modelirovanie, 16:11 (2004), 77–88 | MR | Zbl

[2] V. E. Alemasov, D. V. Aprosin, M. Kh. Brenerman, A. R. Kessel, Ya. I. Kravtsov, “Chislennoe modelirovanie protsessov filtratsii v neftyanom plaste”, Zhurnal fizicheskoi khimii, 72:3 (1998), 569–573

[3] I. M. Sobol, Chislennye metody Monte-Karlo, Nauka, M., 1973 | MR

[4] M. V. Iakobovski, M. A. Kornilina, M. N. Voroniuk, “The Scalable GPU-based Parallel Algorithm for Uniform Pseudorandom Number Generation”, Proceedings of the Second International Conference on Parallel, Distributed, Grid and Cloud Computing for Engineering, eds. P. Iványi, B. H. V. Topping, Civil-Comp Press, Stirlingshire, UK, 2011, 23

[5] P. L'Ecuyer, R. Simard, “TestU01: ACL ibrary for Empirical Testing of Random Number Generators”, ACM Transactions on Mathematical Software, 33 (2007), 22 | DOI | MR

[6] NVIDIA CUDA. Programming Guide. Ver. 4.2, 4/5/2012

[7] NVIDIA CUDA. Best Practice Guide. Ver. 4.1, January 2012

[8] A. V. Boreskov i dr., Parallelnye vychisleniya na GPU. Arkhitektura i programmnaya model CUDA: Ucheb. posobie, Predisl.: V. A. Sadovnichii, Seriya «Superkompyuternoe obrazovanie», Izdatelstvo Moskovskogo universiteta, M., 2012, 336 pp.

[9] V. Volkov, “Better performance at lower occupancy”, Presentation at GPU Technology Conference 2010, GTC 2010

[10] M. V. Yakobovskii, “Parallelnyi algoritm generatsii posledovatelnostei psevdosluchainykh chisel”, Matematicheskoe modelirovanie, 21:6 (2009), 59–68 | MR

[11] R. P. Brent, On the Periods of Generalized Fibonacci Recurrences, Technical Report TRCS-92–03, Computer Sciences Laboratory, ANU, March 1992