About new method of closure of the equations of turbulent motion of compressible heat-conducting gas
Matematičeskoe modelirovanie, Tome 24 (2012) no. 11, pp. 113-136.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper considers the modern approach to the thermodynamic modeling of developed turbulent flows of a compressible fluid based on the systematic application of the formalism of extended irreversible thermodynamics (EIT) that goes beyond the local equilibrium hypothesis, which is an inseparable attribute of classical nonequilibrium thermodynamics (CNT). In addition to the classical thermodynamic variables, EIT introduces new state parameters — dissipative flows and the means to obtain the respective evolutionary equations consistent with the second law of thermodynamics. The paper presents a detailed discussion of a number of physical and mathematical postulates and assumptions used to build a thermodynamic model of developed turbulence. A turbulized liquid is treated as an indiscrete continuum consisting of two thermodynamic sub-systems: an averaged motion subsystem and a turbulent chaos subsystem, where turbulent chaos is understood as a conglomerate of small-scale vortex bodies. Under the above formalism, this representation enables the construction of new models of continual mechanics to derive cause-and-effect differential equations for turbulent heat and impulse transfer, which describe, together with the averaged conservations laws, turbulent flows with transverse shear. Unlike gradient (noncausal) relationships for turbulent flows, these differential equations can be used to investigate both phenomena with history or memory, and nonlocal and nonlinear effects. Thus, within EIT, the second-order turbulence models underlying the so-called invariant modeling of developed turbulence get a thermodynamic explanation.
Keywords: turbulence of compressible gases, closure problem, extended irreversible thermodynamics.
@article{MM_2012_24_11_a8,
     author = {A. V. Kolesnichenko},
     title = {About new method of closure of the equations of turbulent motion of compressible heat-conducting gas},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {113--136},
     publisher = {mathdoc},
     volume = {24},
     number = {11},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2012_24_11_a8/}
}
TY  - JOUR
AU  - A. V. Kolesnichenko
TI  - About new method of closure of the equations of turbulent motion of compressible heat-conducting gas
JO  - Matematičeskoe modelirovanie
PY  - 2012
SP  - 113
EP  - 136
VL  - 24
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2012_24_11_a8/
LA  - ru
ID  - MM_2012_24_11_a8
ER  - 
%0 Journal Article
%A A. V. Kolesnichenko
%T About new method of closure of the equations of turbulent motion of compressible heat-conducting gas
%J Matematičeskoe modelirovanie
%D 2012
%P 113-136
%V 24
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2012_24_11_a8/
%G ru
%F MM_2012_24_11_a8
A. V. Kolesnichenko. About new method of closure of the equations of turbulent motion of compressible heat-conducting gas. Matematičeskoe modelirovanie, Tome 24 (2012) no. 11, pp. 113-136. http://geodesic.mathdoc.fr/item/MM_2012_24_11_a8/

[1] U. Frost, T. Moulden (red.), Turbulentnost: Printsipy i primeneniya, Mir, M., 1980, 535 pp.

[2] Keller L. V., Friedman A. A., “Differentialgleichungen fur die turbulente Bewegung einer kompressiblen Flussigkeit”, Proc. I Intern. Congress Appl. Mech. (Delft, 1924), 395–405

[3] Ievlev V. M., Turbulentnoe dvizhenie vysokotemperaturnykh sploshnykh sred, Nauka, M., 1975, 256 pp.

[4] Ievlev V. M., Chislennoe modelirovanie turbulentnykh techenii, Nauka, M., 1990, 215 pp. | MR | Zbl

[5] Sedov L. I., Mysli ob uchenykh i nauke proshlogo i nastoyaschego, Nauka, M., 1973, 116 pp.

[6] De Groot S., Mazur P., Neravnovesnaya termodinamika, Mir, M., 1964, 456 pp.

[7] Truesdell C., Rational Thermodynamics, McGrow-Hill, New York, 1969 ; 2nd enlarget edition, Springer, New York, 1984 | MR

[8] Kaizer Dzh., Statisticheskaya termodinamika neravnovesnykh protsessov, Mir, M., 1990, 607 pp. | MR

[9] Kolesnichenko A. V., Marov M. Ya., Turbulentnost mnogokomponentnykh sred, MAIK «Nauka», M., 1999, 336 pp. | MR

[10] Keizer J., “On the relationship between fluctuating irreversible thermodynamics and ‘extended’ irreversible thermodynamics”, J. Stat. Phys., 31 (1983), 485–497 | DOI

[11] Nettleton R. E., Sobolev S. L., “Applications of extended thermodynamics to chemical, rheological and transport processes: a special survey”, J. Non-Equilib. Thermodyn., 20 (1995), 200–229; 297–331 | Zbl

[12] Miller I., Ruggeri T., Rational Extended Thermodynamics, 2nd ed., Springer, Berlin–Heidelberg–New York, 1998 | MR

[13] Jou D., Casas-Vazquez J., Lebon G., Extended Irreversible Thermodynamics, 3rd ed., Springer, Berlin–Heidelberg–New York, 2001

[14] Zhou D., Kasas-Baskes Kh., Lebon Dzh., Rasshirennaya neobratimaya termodinamika, NITs «Regulyarnaya i khaoticheskaya dinamika». Institut kompyuternykh issledovanii, Moskva–Izhevsk, 2006, 528 pp.

[15] Lebon G., Casas-Vazquez J., Jou D., “Questions and answers about a thermodynamic theory of the third type”, Contemp. Phys., 33 (1992), 41–51 | DOI

[16] Lebon G., Torrissi M., Valenti A., “A nonlocal thermodynamic analysis of second sound propagation in crystalline dielectrics”, J. Phys., 7 (1995), 1461–1474

[17] Lebon G., Jou D., Casas-Vazquez J., Understanding Non-equilibrium Thermodynamics: Foundations, Applications, Frontiers, Springer-Verlag, Berlin–Heidelberg, 2008, 325 pp. | MR

[18] Uchaikin V. V., Metod drobnykh proizvodnykh, Izd-vo «Artishok», Ulyanovsk, 2008, 512 pp.

[19] Casas-Vazquez J., Jou D., “Temperature in non-equilibrium states: a review of open problems and current proposals”, Rep. Prog. Phys., 66 (2003), 1937–2023 | DOI

[20] Kolesnichenko A. V., “Sootnosheniya Stefana–Maksvella i potok tepla dlya turbulentnykh mnogokomponentnykh sploshnykh sred”, Problemy sovremennoi mekhaniki. K yubileyu L. I. Sedova, Izd-vo MGU, M., 1998, 52–76

[21] Favre A., “Statistical Equations of Turbulents Gases”, Problems of Hydrodynamics and Continuum Mechanics, SIAM, Philadelphia, 1969, 231–267

[22] Van Migem Zh., Energetika atmosfery, Gidrometeoizdat, L., 1977, 326 pp.

[23] Klimontovich Yu. L., Turbulentnoe dvizhenie i struktura khaosa: Novyi podkhod k statisticheskoi teorii otkrytykh sistem, Nauka, M., 1990, 320 pp. | MR

[24] Klimontovich Yu. L., Statisticheskaya teoriya otkrytykh sistem, TOO «Yanus», M., 1995, 624 pp.

[25] Chetverushkin B. N., Kineticheskie skhemy i kvazigazodinamicheskaya sistema uravnenii, MAKS Press, M., 2004, 332 pp. | Zbl

[26] Kolesnichenko A. V., Marov M. Ya., Turbulentnost i samoorganizatsiya. Problemy modelirovaniya kosmicheskikh i prirodnykh sred, BINOM. Laboratoriya znanii, M., 2009, 632 pp.

[27] Ebeling V., Obrazovanie struktur pri neobratimykh protsessakh: Vvedenie v teoriyu dissipativnykh struktur, Institut kompyuternykh issledovanii. NITs «Regulyarnaya i khaoticheskaya dinamika», Moskva–Izhevsk, 2004, 255 pp.

[28] Nevzglyadov V. G., “K fenomenologicheskoi teorii turbulentnosti”, Dokl. AN SSSR, 47:3 (1945), 169–173

[29] Blackadar A. K., “Extension of the laws of thermodynamics to turbulent system”, J. Meteorology, 12:9 (1955), 165–175 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[30] Myunster A., Khimicheskaya termodinamika, Editorial USSR, M., 2002, 295 pp.

[31] Sedov L. I., Mekhanika sploshnoi sredy, v. 2, Nauka, M., 1984, 568 pp. | MR

[32] Dyarmati I., Neravnovesnaya termodinamika, Mir, M., 1974, 304 pp.

[33] Cattaneo C., “Sulla conduzione del calore”, Atti Seminario Mat. Fis. University Modena, 1948, no. 3, 83–101 | MR