Simulation of the bond problem of the one-dimensional percolation theory on the nondirectional count
Matematičeskoe modelirovanie, Tome 24 (2012) no. 11, pp. 72-82.

Voir la notice de l'article provenant de la source Math-Net.Ru

The mathematical model of the solution of an one-dimensional bond problem with use of the theory of counts is viewed at arbitrary radius of a percolation. The new algorithm of tagging-out of the clusters is offered, allowing on a matrix of a contiguity of the nondirectional count to spot course presence in a chain. Within the framework of this model there is possible a solution of an one-dimensional bond problem without construction of a coating lattice for the finite size systems. The model can be used at examination hopping conductance in semiconductors and the anomalous diffusion at low temperatures, and also at interpretation of experimental data in nanometer and mesoscopic systems.
Keywords: percolation theory, one-dimensional bond problem, cluster, theory of counts, critical exponents, scaling hypothesis.
@article{MM_2012_24_11_a5,
     author = {M. A. Bureeva and V. N. Udodov},
     title = {Simulation of the bond problem of the one-dimensional percolation theory on the nondirectional count},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {72--82},
     publisher = {mathdoc},
     volume = {24},
     number = {11},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2012_24_11_a5/}
}
TY  - JOUR
AU  - M. A. Bureeva
AU  - V. N. Udodov
TI  - Simulation of the bond problem of the one-dimensional percolation theory on the nondirectional count
JO  - Matematičeskoe modelirovanie
PY  - 2012
SP  - 72
EP  - 82
VL  - 24
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2012_24_11_a5/
LA  - ru
ID  - MM_2012_24_11_a5
ER  - 
%0 Journal Article
%A M. A. Bureeva
%A V. N. Udodov
%T Simulation of the bond problem of the one-dimensional percolation theory on the nondirectional count
%J Matematičeskoe modelirovanie
%D 2012
%P 72-82
%V 24
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2012_24_11_a5/
%G ru
%F MM_2012_24_11_a5
M. A. Bureeva; V. N. Udodov. Simulation of the bond problem of the one-dimensional percolation theory on the nondirectional count. Matematičeskoe modelirovanie, Tome 24 (2012) no. 11, pp. 72-82. http://geodesic.mathdoc.fr/item/MM_2012_24_11_a5/

[1] Karpov Yu., Imitatsionnoe modelirovanie sistem. Vvedenie v modelirovanie s AnyLogic 5, BKhV-Peterburg, SPb., 2005, 400 pp.

[2] Guld Kh., Tobochnik Ya., Kompyuternoe modelirovanie v fizike, v. 1, Mir, M., 1990, 350 pp.

[3] Ginzburg V. L., O fizike i astrofizike, Nauka, M., 1985, 400 pp. | MR

[4] Balesku R., Ravnovesnaya i neravnovesnaya statisticheskaya mekhanika, v. 1, Mir, M., 1978, 405 pp. | MR

[5] Vasilev A. N., Kvantovopolevaya renormgruppa v teorii kriticheskogo povedeniya i stokhasticheskoi dinamike, Izd-vo PIYaF, Spb., 1998, 774 pp.

[6] Guld Kh., Tobochnik Ya., Kompyuternoe modelirovanie v fizike, v. 2, Mir, M., 1990, 400 pp.

[7] Binder K., Kheerman D. V., Modelirovanie metodom Monte-Karlo v statisticheskoi fizike: Vvedenie, Nauka. FIZMATLIT, M., 1995, 144 pp. | MR

[8] Prudnikov V. V., Vakilov A. N., Prudnikov P. V., Fazovye perekhody i metody ikh kompyuternogo modelirovaniya, OmGU, Omsk, 2007, 288 pp.

[9] Tarasevich Yu. Yu., Perkolyatsiya: teoriya, prilozheniya, algoritmy, Editorial URSS, M., 2002, 112 pp.

[10] Sokolov I. M., “Razmernosti i drugie geometricheskie kriticheskie pokazateli v teorii protekaniya”, UFN, 150:2 (1986), 221–255 | DOI | MR

[11] Ponomareva V. G., Kompozitsionnye protonnye elektrolity na osnove gidrosulfatov i digidrofosfatov schelochnykh metallov, Avtoreferat dissertatsii doktora khim. nauk, Institut khimii tverdogo tela i mekhanokhimii Sibirskogo otdeleniya RAN, Novosibirsk, 2009

[12] Kovalev O. V., Zhilin S. G. (red.), Fazovye perekhody v biologicheskikh sistemakh i evolyutsiya bioraznoobraziya, PIYaF RAN, SPb., 2007, 196 pp.

[13] Fomina Yu. A., “Konfigurator rossiiskoi ekonomiki”, Nauchnye trudy DonNTU. Seriya: ekonomicheskaya, 2007, no. 31–32, 159–164

[14] Khalkechev K. V., Khalkechev R. K., “Matematicheskoe modelirovanie tekhnogennykh katastrof. I: Fraktalnaya klasternaya model vnezapnykh vybrosov”, Regionalnyi makrosimpozium «Nasuschnye zadachi prikladnoi i promyshlennoi matematiki v Stavropole», IX Vserossiiskii simpozium po prikladnoi i promyshlennoi matematike (vesennyaya sessiya) (Kislovodsk, 2008) http://www.tvp.ru/conferen/vsppm09/kipev438.pdf | Zbl

[15] Efros A. L., Fizika i geometriya besporyadka, Nauka. Glavnaya redaktsiya fiziko-matematicheskoi literatury, M., 1982, 167 pp. | MR

[16] Shklovskii B. I., Efros A. L., Elektronnye svoistva legirovannykh poluprovodnikov, Nauka. Glavnaya redaktsiya fiziko-matematicheskoi literatury, M., 1979, 416 pp.

[17] Zaiman Dzh., Modeli besporyadka, Mir, M., 1982, 592 pp.

[18] Feder E., Fraktaly, Mir, M., 1991, 260 pp. | MR

[19] Menshikov M. V., Molchanov S. A., Sidorenko A. F., “Teoriya perkolyatsii i nekotorye prilozheniya”, Itogi nauki i tekhniki. Ser. Teoriya veroyatnostei. Matematicheskaya statistika. Teoreticheskaya kibernetika, 24, VINITI, M., 1986, 53–110 | MR

[20] Arkhincheev V. E., Baskin E. M., “Anomalnaya diffuziya i dreif v grebeshkovoi modeli perkolyatsionnykh klasterov”, ZhETF, 100:1(7) (1991), 292–300

[21] Volkova T. V., Bureeva M. A., “Zavisimost poroga protekaniya ot dliny tsepochki i ot radiusa protekaniya dlya modeli odnomernoi perkolyatsii”, Fizika i khimiya vysokoenergeticheskikh sistem, Sb. materialov 4 Vseros. konf. mol. uch., TML-Press, Tomsk, 2008, 182–184

[22] Potekaev A. I., Estestvennye dlinnoperiodicheskie nanostruktury, pod obsch. red. A. I. Potekaeva, eds. A. I. Potekaev, I. I. Naumov, V. V. Kulagina, V. N. Udodov i dr., Izd-vo NTL, Tomsk, 2002, 260 pp.

[23] Bureeva M. A., Volkova T. V., Udodov V. N., Potekaev A. I., “The bond problem in a one-dimensional percolation theory for finite systems”, Russian physics journal, 53:2 (2010), 140–147 | DOI

[24] Kristofides N., Teoriya grafov. Algoritmicheskii podkhod, Izd-vo «Mir», M., 1978, 433 pp. | MR

[25] Landau L. D., Lifshits E. M., Teoreticheskaya fizika, Ch. I, v. 5, Statisticheskaya fizika, FIZMATLIT, M., 2002, 616 pp.

[26] Patashinskii A. Z., Pokrovskii V. L., Fluktuatsionnaya teoriya fazovykh perekhodov, Nauka. Fizmatlit, M., 1982, 382 pp. | MR

[27] Baidyshev V. S., Udodov V. N., Kozlitin R. A., Kulkov S. N., “Fraktalnaya razmernost klasterov na kvadratnoi reshetke pri protekanii po pervym i vtorym sosedyam”, Vestnik Khakasskogo gosudarstvennogo universiteta im. N. F. Katanova. Ser. 9: Matematika. Fizika, 4, Izd-vo Khakasskogo gosudarstvennogo universiteta im. N. F. Katanova, Abakan, 2007, 9–13