Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2012_24_11_a5, author = {M. A. Bureeva and V. N. Udodov}, title = {Simulation of the bond problem of the one-dimensional percolation theory on the nondirectional count}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {72--82}, publisher = {mathdoc}, volume = {24}, number = {11}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2012_24_11_a5/} }
TY - JOUR AU - M. A. Bureeva AU - V. N. Udodov TI - Simulation of the bond problem of the one-dimensional percolation theory on the nondirectional count JO - Matematičeskoe modelirovanie PY - 2012 SP - 72 EP - 82 VL - 24 IS - 11 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2012_24_11_a5/ LA - ru ID - MM_2012_24_11_a5 ER -
%0 Journal Article %A M. A. Bureeva %A V. N. Udodov %T Simulation of the bond problem of the one-dimensional percolation theory on the nondirectional count %J Matematičeskoe modelirovanie %D 2012 %P 72-82 %V 24 %N 11 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2012_24_11_a5/ %G ru %F MM_2012_24_11_a5
M. A. Bureeva; V. N. Udodov. Simulation of the bond problem of the one-dimensional percolation theory on the nondirectional count. Matematičeskoe modelirovanie, Tome 24 (2012) no. 11, pp. 72-82. http://geodesic.mathdoc.fr/item/MM_2012_24_11_a5/
[1] Karpov Yu., Imitatsionnoe modelirovanie sistem. Vvedenie v modelirovanie s AnyLogic 5, BKhV-Peterburg, SPb., 2005, 400 pp.
[2] Guld Kh., Tobochnik Ya., Kompyuternoe modelirovanie v fizike, v. 1, Mir, M., 1990, 350 pp.
[3] Ginzburg V. L., O fizike i astrofizike, Nauka, M., 1985, 400 pp. | MR
[4] Balesku R., Ravnovesnaya i neravnovesnaya statisticheskaya mekhanika, v. 1, Mir, M., 1978, 405 pp. | MR
[5] Vasilev A. N., Kvantovopolevaya renormgruppa v teorii kriticheskogo povedeniya i stokhasticheskoi dinamike, Izd-vo PIYaF, Spb., 1998, 774 pp.
[6] Guld Kh., Tobochnik Ya., Kompyuternoe modelirovanie v fizike, v. 2, Mir, M., 1990, 400 pp.
[7] Binder K., Kheerman D. V., Modelirovanie metodom Monte-Karlo v statisticheskoi fizike: Vvedenie, Nauka. FIZMATLIT, M., 1995, 144 pp. | MR
[8] Prudnikov V. V., Vakilov A. N., Prudnikov P. V., Fazovye perekhody i metody ikh kompyuternogo modelirovaniya, OmGU, Omsk, 2007, 288 pp.
[9] Tarasevich Yu. Yu., Perkolyatsiya: teoriya, prilozheniya, algoritmy, Editorial URSS, M., 2002, 112 pp.
[10] Sokolov I. M., “Razmernosti i drugie geometricheskie kriticheskie pokazateli v teorii protekaniya”, UFN, 150:2 (1986), 221–255 | DOI | MR
[11] Ponomareva V. G., Kompozitsionnye protonnye elektrolity na osnove gidrosulfatov i digidrofosfatov schelochnykh metallov, Avtoreferat dissertatsii doktora khim. nauk, Institut khimii tverdogo tela i mekhanokhimii Sibirskogo otdeleniya RAN, Novosibirsk, 2009
[12] Kovalev O. V., Zhilin S. G. (red.), Fazovye perekhody v biologicheskikh sistemakh i evolyutsiya bioraznoobraziya, PIYaF RAN, SPb., 2007, 196 pp.
[13] Fomina Yu. A., “Konfigurator rossiiskoi ekonomiki”, Nauchnye trudy DonNTU. Seriya: ekonomicheskaya, 2007, no. 31–32, 159–164
[14] Khalkechev K. V., Khalkechev R. K., “Matematicheskoe modelirovanie tekhnogennykh katastrof. I: Fraktalnaya klasternaya model vnezapnykh vybrosov”, Regionalnyi makrosimpozium «Nasuschnye zadachi prikladnoi i promyshlennoi matematiki v Stavropole», IX Vserossiiskii simpozium po prikladnoi i promyshlennoi matematike (vesennyaya sessiya) (Kislovodsk, 2008) http://www.tvp.ru/conferen/vsppm09/kipev438.pdf | Zbl
[15] Efros A. L., Fizika i geometriya besporyadka, Nauka. Glavnaya redaktsiya fiziko-matematicheskoi literatury, M., 1982, 167 pp. | MR
[16] Shklovskii B. I., Efros A. L., Elektronnye svoistva legirovannykh poluprovodnikov, Nauka. Glavnaya redaktsiya fiziko-matematicheskoi literatury, M., 1979, 416 pp.
[17] Zaiman Dzh., Modeli besporyadka, Mir, M., 1982, 592 pp.
[18] Feder E., Fraktaly, Mir, M., 1991, 260 pp. | MR
[19] Menshikov M. V., Molchanov S. A., Sidorenko A. F., “Teoriya perkolyatsii i nekotorye prilozheniya”, Itogi nauki i tekhniki. Ser. Teoriya veroyatnostei. Matematicheskaya statistika. Teoreticheskaya kibernetika, 24, VINITI, M., 1986, 53–110 | MR
[20] Arkhincheev V. E., Baskin E. M., “Anomalnaya diffuziya i dreif v grebeshkovoi modeli perkolyatsionnykh klasterov”, ZhETF, 100:1(7) (1991), 292–300
[21] Volkova T. V., Bureeva M. A., “Zavisimost poroga protekaniya ot dliny tsepochki i ot radiusa protekaniya dlya modeli odnomernoi perkolyatsii”, Fizika i khimiya vysokoenergeticheskikh sistem, Sb. materialov 4 Vseros. konf. mol. uch., TML-Press, Tomsk, 2008, 182–184
[22] Potekaev A. I., Estestvennye dlinnoperiodicheskie nanostruktury, pod obsch. red. A. I. Potekaeva, eds. A. I. Potekaev, I. I. Naumov, V. V. Kulagina, V. N. Udodov i dr., Izd-vo NTL, Tomsk, 2002, 260 pp.
[23] Bureeva M. A., Volkova T. V., Udodov V. N., Potekaev A. I., “The bond problem in a one-dimensional percolation theory for finite systems”, Russian physics journal, 53:2 (2010), 140–147 | DOI
[24] Kristofides N., Teoriya grafov. Algoritmicheskii podkhod, Izd-vo «Mir», M., 1978, 433 pp. | MR
[25] Landau L. D., Lifshits E. M., Teoreticheskaya fizika, Ch. I, v. 5, Statisticheskaya fizika, FIZMATLIT, M., 2002, 616 pp.
[26] Patashinskii A. Z., Pokrovskii V. L., Fluktuatsionnaya teoriya fazovykh perekhodov, Nauka. Fizmatlit, M., 1982, 382 pp. | MR
[27] Baidyshev V. S., Udodov V. N., Kozlitin R. A., Kulkov S. N., “Fraktalnaya razmernost klasterov na kvadratnoi reshetke pri protekanii po pervym i vtorym sosedyam”, Vestnik Khakasskogo gosudarstvennogo universiteta im. N. F. Katanova. Ser. 9: Matematika. Fizika, 4, Izd-vo Khakasskogo gosudarstvennogo universiteta im. N. F. Katanova, Abakan, 2007, 9–13