First principles simulation of phase transition in amorphous carbon
Matematičeskoe modelirovanie, Tome 24 (2012) no. 10, pp. 65-79.

Voir la notice de l'article provenant de la source Math-Net.Ru

First principles mathematical modeling of phase transition in amorphous carbon is presented in the work. Supercomputer calculations, based on quantum mechanical Car–Parrinello molecular dynamics, are done (code CPMD). It is shown, that when temperature rises, graphite-like high conductive domains begin to dominate over diamond-like nonconducting domains. System energy has hysteresis character, when structure is heated and annealed. Sample atomic structure at given temperature might have different form depending on temperature change scenario, when given state is created. At given temperatures calculations of densities of states and Fermi energies are given, which show conductivity switching at certain temperature. Temperature percolation thresholds analysis, based on electronic density evolution of system, is given. It is shown, that switching from high resistive amorphous carbon structure to low resistive crystalline structure can be induced by thermal effects, which happen in experiments of nonvolatile memory, based on phase transition in amorphous carbon.
Mots-clés : amorphous carbon, phase transition
Keywords: resistance switching, conductivity switching, quantum molecular dynamics.
@article{MM_2012_24_10_a5,
     author = {G. N. Shumkin and A. M. Popov},
     title = {First principles simulation of phase transition in amorphous carbon},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {65--79},
     publisher = {mathdoc},
     volume = {24},
     number = {10},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2012_24_10_a5/}
}
TY  - JOUR
AU  - G. N. Shumkin
AU  - A. M. Popov
TI  - First principles simulation of phase transition in amorphous carbon
JO  - Matematičeskoe modelirovanie
PY  - 2012
SP  - 65
EP  - 79
VL  - 24
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2012_24_10_a5/
LA  - ru
ID  - MM_2012_24_10_a5
ER  - 
%0 Journal Article
%A G. N. Shumkin
%A A. M. Popov
%T First principles simulation of phase transition in amorphous carbon
%J Matematičeskoe modelirovanie
%D 2012
%P 65-79
%V 24
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2012_24_10_a5/
%G ru
%F MM_2012_24_10_a5
G. N. Shumkin; A. M. Popov. First principles simulation of phase transition in amorphous carbon. Matematičeskoe modelirovanie, Tome 24 (2012) no. 10, pp. 65-79. http://geodesic.mathdoc.fr/item/MM_2012_24_10_a5/

[1] Kreupl F., Bruchhaus R. et al., “Carbon-Based Resistive Memory”, IEEE Int. Electron Devices Meeting Technical Digest, 2008, 521–524

[2] Meijer G., Who wins the nonvolatile memory race?, Science, 319 (2008), 1625–1626 | DOI

[3] Wuttig M., Yamada N., “Phase-change materials for rewritable data storage”, Nat. Mater., 6 (2007), 824–832 | DOI

[4] Robertson J., “Diamond-like amorphous carbon”, Materials Science and Engineering R: Reports, 37 (2002), 129–281 | DOI

[5] Takai K., Oga M., Sato H. et al., “Structure and electronic properties of a nongraphitic disordered carbon system and its heat-treatment effects”, Phys. Rev. B, 67 (2003), 214202 | DOI

[6] Ivanov-Omskii V. I., Lodygin A. B., Yastrebov S. G., “Skaniruyuschaya tunnelnaya spektroskopiya amorfnogo ugleroda: model tunnelirovaniya”, Pisma v ZhTF, 25:24 (1999), 66–71

[7] Sebastian A., Pauza A., Rossel C., Shelby R. M., Rodriguez A. F., Pozidis H., Eleftheriou E., “Resistance switching at the nanometer scale in amorphous carbon”, New Journal of Physics, 13 (2011), 013020 | DOI

[8] Marks N. A., McKenzie D. R., Pailthorpe B. A., Bernasconi M., Parrinello M., “Ab initio simulations of tetrahedral amorphous carbon”, Phys. Rev. B, 54:14 (1996), 9703–9714 | DOI

[9] He Y., Zhang J., Guan X. et al., “Molecular Dynamics Study of the Switching Mechanism of Carbon-Based Resistive Memory”, IEEE Transactions on Electron Devices, 57:12 (2010), 3434–3441 | DOI

[10] Car R., Parrinello M., “Unified approach for molecular dynamics and density-functional theory”, Phys. Rev. Lett., 55 (1985), 2471–2474 | DOI

[11] CPMD http://www.zurich.ibm.com/deepcomputing

[12] Andreoni W., Curioni A., “New Advances in Chemistry and Materials Science with CPMD and Parallel Computing”, Parallel Computing, 26 (2000), 819–842 | DOI | Zbl

[13] Kohn W., “Density Functional and Density Matrix Method Scaling Linearly with the Number of Atoms”, Phys. Rev. Lett., 76:17 (1996), 3168–3171 | DOI

[14] Bekas C., Curioni A., Andreoni W., “Atomic Wavefunction Initialization in ab initio Molecular Dynamics using Distributed Lanczos”, Parallel Computing, 34:6 (2008), 441–450 | DOI | MR

[15] Shumkin G. N., Popov A. M., Curioni A., Laino T. A., “Multiscale Modelling of Naphthalocyaninebased Molecular Switch”, Procedia Computer Science, 1:1 (2010), 185–192 | DOI

[16] Kubo R., Statisticheskaya mekhanika, Mir, M., 1967

[17] Binder K., Kheerman D. V., Modelirovanie metodom Monte-Karlo v statisticheskoi fizike, Nauka, M., 1995, 144 pp. | MR