Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2012_24_10_a5, author = {G. N. Shumkin and A. M. Popov}, title = {First principles simulation of phase transition in amorphous carbon}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {65--79}, publisher = {mathdoc}, volume = {24}, number = {10}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2012_24_10_a5/} }
G. N. Shumkin; A. M. Popov. First principles simulation of phase transition in amorphous carbon. Matematičeskoe modelirovanie, Tome 24 (2012) no. 10, pp. 65-79. http://geodesic.mathdoc.fr/item/MM_2012_24_10_a5/
[1] Kreupl F., Bruchhaus R. et al., “Carbon-Based Resistive Memory”, IEEE Int. Electron Devices Meeting Technical Digest, 2008, 521–524
[2] Meijer G., Who wins the nonvolatile memory race?, Science, 319 (2008), 1625–1626 | DOI
[3] Wuttig M., Yamada N., “Phase-change materials for rewritable data storage”, Nat. Mater., 6 (2007), 824–832 | DOI
[4] Robertson J., “Diamond-like amorphous carbon”, Materials Science and Engineering R: Reports, 37 (2002), 129–281 | DOI
[5] Takai K., Oga M., Sato H. et al., “Structure and electronic properties of a nongraphitic disordered carbon system and its heat-treatment effects”, Phys. Rev. B, 67 (2003), 214202 | DOI
[6] Ivanov-Omskii V. I., Lodygin A. B., Yastrebov S. G., “Skaniruyuschaya tunnelnaya spektroskopiya amorfnogo ugleroda: model tunnelirovaniya”, Pisma v ZhTF, 25:24 (1999), 66–71
[7] Sebastian A., Pauza A., Rossel C., Shelby R. M., Rodriguez A. F., Pozidis H., Eleftheriou E., “Resistance switching at the nanometer scale in amorphous carbon”, New Journal of Physics, 13 (2011), 013020 | DOI
[8] Marks N. A., McKenzie D. R., Pailthorpe B. A., Bernasconi M., Parrinello M., “Ab initio simulations of tetrahedral amorphous carbon”, Phys. Rev. B, 54:14 (1996), 9703–9714 | DOI
[9] He Y., Zhang J., Guan X. et al., “Molecular Dynamics Study of the Switching Mechanism of Carbon-Based Resistive Memory”, IEEE Transactions on Electron Devices, 57:12 (2010), 3434–3441 | DOI
[10] Car R., Parrinello M., “Unified approach for molecular dynamics and density-functional theory”, Phys. Rev. Lett., 55 (1985), 2471–2474 | DOI
[11] CPMD http://www.zurich.ibm.com/deepcomputing
[12] Andreoni W., Curioni A., “New Advances in Chemistry and Materials Science with CPMD and Parallel Computing”, Parallel Computing, 26 (2000), 819–842 | DOI | Zbl
[13] Kohn W., “Density Functional and Density Matrix Method Scaling Linearly with the Number of Atoms”, Phys. Rev. Lett., 76:17 (1996), 3168–3171 | DOI
[14] Bekas C., Curioni A., Andreoni W., “Atomic Wavefunction Initialization in ab initio Molecular Dynamics using Distributed Lanczos”, Parallel Computing, 34:6 (2008), 441–450 | DOI | MR
[15] Shumkin G. N., Popov A. M., Curioni A., Laino T. A., “Multiscale Modelling of Naphthalocyaninebased Molecular Switch”, Procedia Computer Science, 1:1 (2010), 185–192 | DOI
[16] Kubo R., Statisticheskaya mekhanika, Mir, M., 1967
[17] Binder K., Kheerman D. V., Modelirovanie metodom Monte-Karlo v statisticheskoi fizike, Nauka, M., 1995, 144 pp. | MR