The space discretization of the one-dimensional barotropic quasi-gas dynamic system of equations and the energy balance equation
Matematičeskoe modelirovanie, Tome 24 (2012) no. 10, pp. 51-64.

Voir la notice de l'article provenant de la source Math-Net.Ru

For the barotropic quasi-gas dynamic system of equations, the law of non-increasing total energy is valid. But even in the spatially one-dimensional case, for its standard discretizations the validity of this law cannot be provided since there appear mesh disbalance terms. We propose a new conservative symmetric in space discretization of this system, for which the energy balance equation of the proper form is derived and non-increasing of the total energy is guaranteed (that takes place even in the presence of the potential mass force). Important elements of the method are non-standard space average of the density depending on the state function and discretization of the derivative of this function. The results are valid for any non-uniform mesh. As an important special case, the results are valid for a regularized (quasi-gas dynamic) system of shallow water equations in the general case of non-flat bottom; moreover, here the non-standard discretizations become standard ones but the method is still new. It is the well-balanced in a sense.
Keywords: gas dynamics, shallow water equations, space discretization, energy balance law.
Mots-clés : quasi-gasdynamic system of equations
@article{MM_2012_24_10_a4,
     author = {A. A. Zlotnik},
     title = {The space discretization of the one-dimensional barotropic quasi-gas dynamic system of equations and the energy balance equation},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {51--64},
     publisher = {mathdoc},
     volume = {24},
     number = {10},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2012_24_10_a4/}
}
TY  - JOUR
AU  - A. A. Zlotnik
TI  - The space discretization of the one-dimensional barotropic quasi-gas dynamic system of equations and the energy balance equation
JO  - Matematičeskoe modelirovanie
PY  - 2012
SP  - 51
EP  - 64
VL  - 24
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2012_24_10_a4/
LA  - ru
ID  - MM_2012_24_10_a4
ER  - 
%0 Journal Article
%A A. A. Zlotnik
%T The space discretization of the one-dimensional barotropic quasi-gas dynamic system of equations and the energy balance equation
%J Matematičeskoe modelirovanie
%D 2012
%P 51-64
%V 24
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2012_24_10_a4/
%G ru
%F MM_2012_24_10_a4
A. A. Zlotnik. The space discretization of the one-dimensional barotropic quasi-gas dynamic system of equations and the energy balance equation. Matematičeskoe modelirovanie, Tome 24 (2012) no. 10, pp. 51-64. http://geodesic.mathdoc.fr/item/MM_2012_24_10_a4/

[1] Chetverushkin B. N., Kineticheskie skhemy i kvazigazodinamicheskaya sistema uravnenii, MAKS Press, M., 2004 | Zbl

[2] Elizarova T. G., Kvazigazodinamicheskie uravneniya i metody rascheta vyazkikh techenii, Nauchnyi mir, M., 2007

[3] Sheretov Yu. V., Dinamika sploshnykh sred pri prostranstvenno-vremennom osrednenii, NITs «Regulyarnaya i khaoticheskaya dinamika», Moskva–Izhevsk, 2009

[4] Zlotnik A. A., Chetverushkin B. N., “O parabolichnosti kvazigazodinamicheskoi sistemy uravnenii, ee giperbolicheskoi 2-go poryadka modifikatsii i ustoichivosti malykh vozmuschenii dlya nikh”, Zh. vychisl. matem. i matem. fiz., 48:3 (2008), 445–472 | MR | Zbl

[5] Zlotnik A. A., “Energeticheskie ravenstva i otsenki dlya barotropnykh kvazigazo- i kvazigidrodinamicheskikh sistem uravnenii”, Zh. vychisl. matem. i matem. fiz., 50:2 (2010), 325–337 | MR | Zbl

[6] Zlotnik A. A., “O postroenii kvazigazodinamicheskikh sistem uravnenii i barotropnoi sisteme s potentsialnoi massovoi siloi”, Matem. modelirovanie, 24:4 (2012), 65–79

[7] Amosov A. A., Zlotnik A. A., “Raznostnye skhemy vtorogo poryadka tochnosti dlya uravnenii odnomernogo dvizheniya vyazkogo gaza”, Zh. vychisl. matem. i matem. fiz., 27:7 (1987), 1032–1049 | MR | Zbl

[8] Amosov A. A., Zlotnik A. A., “Two-level finite-difference schemes for one-dimensional equations of magnetic gas dynamics (viscous heat-conducting case)”, Sov. J. Numer. Anal. Math. Modelling, 4:3 (1989), 179–197 | DOI | MR | Zbl

[9] Bulatov O. V., Elizarova T. G., “Regulyarizovannye uravneniya melkoi vody i effektivnyi metod chislennogo modelirovaniya techenii v neglubokikh vodoemakh”, Zh. vychisl. matem. i matem. fiz., 51:1 (2011), 170–184 | MR | Zbl

[10] Elizarova T. G., Zlotnik A. A., Nikitina O. V., Modelirovanie odnomernykh techenii melkoi vody na osnove regulyarizovannykh uravnenii, preprint No 33, IPM im. M. V. Keldysha, M., 2011, 36 pp.

[11] Hairer E., Lubich C., Wanner G., Geometric numerical integration: structure-preserving algorithms for ordinary differential equations, 2nd ed., Springer, Berlin, 2006 | MR

[12] Zlotnik A. A., “Ob uravneniyakh odnomernogo dvizheniya vyazkogo barotropnogo gaza pri nalichii massovoi sily”, Sib. matem. zhurn., 33:5 (1992), 62–79 | MR | Zbl

[13] Amosov A. A., Zlotnik A. A., “A study of finite-difference method for the one-dimensional viscous heat conductive gas flow equations. Part I: A priori estimates and stability”, Sov. J. Numer. Anal. Math. Modelling, 2:3 (1987), 159–178 | DOI | MR | Zbl

[14] Elizarova T. G., Istomina M. A., Shelkovnikov N. K., “Formirovanie uedinennoi volny v koltsevom gidrokanale”, Matem. modelirovanie, 24:4 (2012), 107–116