Numerical solving unsteady problems for the system of the Nernst--Planck equations
Matematičeskoe modelirovanie, Tome 24 (2012) no. 10, pp. 133-148.

Voir la notice de l'article provenant de la source Math-Net.Ru

The mathematical model of electricity and mass transfer processes is based on the governing equations for the concentration of charged particles (ions and cations) in an electrolyte — the Nernst–Planck equations. These equations are supplemented with the equation for the electric field and the equations for a motion of electrolyte as a continuum medium. In this work we have focused on constructing approximations in time for approximate solving unsteady problems. The system of the Nernst-Planck equations is characterized by a quadratic non-linearity. To take info accont this nonlinearity, we propose special schemes of linearization. Computational algorithms are studied using a model problem for a binary electrolyte (two types of charged particles).
Keywords: electricity and mass transfer, the Nernst–Planck equations, difference scheme, quadratic non-inearity.
@article{MM_2012_24_10_a10,
     author = {P. N. Vabishchevich and O. P. Iliev},
     title = {Numerical solving unsteady problems for the system of the {Nernst--Planck} equations},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {133--148},
     publisher = {mathdoc},
     volume = {24},
     number = {10},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2012_24_10_a10/}
}
TY  - JOUR
AU  - P. N. Vabishchevich
AU  - O. P. Iliev
TI  - Numerical solving unsteady problems for the system of the Nernst--Planck equations
JO  - Matematičeskoe modelirovanie
PY  - 2012
SP  - 133
EP  - 148
VL  - 24
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2012_24_10_a10/
LA  - ru
ID  - MM_2012_24_10_a10
ER  - 
%0 Journal Article
%A P. N. Vabishchevich
%A O. P. Iliev
%T Numerical solving unsteady problems for the system of the Nernst--Planck equations
%J Matematičeskoe modelirovanie
%D 2012
%P 133-148
%V 24
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2012_24_10_a10/
%G ru
%F MM_2012_24_10_a10
P. N. Vabishchevich; O. P. Iliev. Numerical solving unsteady problems for the system of the Nernst--Planck equations. Matematičeskoe modelirovanie, Tome 24 (2012) no. 10, pp. 133-148. http://geodesic.mathdoc.fr/item/MM_2012_24_10_a10/

[1] Newman J. S., Thomas-Alyea K. E., Electrochemical systems, Wiley-Interscience, 2004 | Zbl

[2] Bard A. J., Stratmann M., Calvo E. J. et all., Encyclopedia of Electrochemistry, Interfacial Kinetics and Mass Transport, v. 2, Wiley-Interscience, 2003 | Zbl

[3] Wallgren C. F., Bark F. H., Eriksson R., Simonsso D. S., Perssont J., Karlsson R. I., “Mass transport in a weakly stratified electrochemical cell”, Journal of Applied Electrochemistry, 26:12 (1996), 1235–1244 | DOI

[4] Fila V., Bouzek K., “A mathematical model of multiple ion transport across an ion-selective membrane under current load conditions”, Journal of Applied Electrochemistry, 33:8 (2003), 675–684 | DOI

[5] Buoni M., Petzold L., “An efficient, scalable numerical algorithm for the simulation of electrochemical systems on irregular domains”, Journal of Computational Physics, 225:2 (2007), 2320–2332 | DOI | MR | Zbl

[6] Prohl A., Schmuck M., “Convergent discretizations for the Nernst–Planck–Poisson system”, Numerische Mathematik, 111:4 (2009), 591–630 | DOI | MR | Zbl

[7] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1989 | MR

[8] Friedman A., Partial differential equations of parabolic type, Prentice-Hall, Englewood Cliffs, NJ, 1964 | MR | Zbl

[9] Samarskii A. A., Vabischevich P. N., Chislennye metody resheniya zadach konvektsii-diffuzii, M., 1990

[10] Ciarlet P. G., The finite element method for elliptic problems, North-Holland, 1978 | MR | Zbl

[11] Samarskii A. A., Vabishchevich P. N., “Explicit-imlicit difference schemes for convection-diffusion problems”, Recent Advances in Numerical Methods and Applications, v. II, eds. O. P. Iliev, M. S. Kaschiev, S. D. Margenov, B. H. Sendov, P. S. Vassilevski, World Scientific, 1999, 74–86 | MR