Hypotheses about laws of biological adaptation. Computer experiments
Matematičeskoe modelirovanie, Tome 24 (2012) no. 10, pp. 15-32.

Voir la notice de l'article provenant de la source Math-Net.Ru

Within the limits of discrete model process of moving of fish population is set a markov’s matrix. Change of the given matrix as its adaptation to a condition of fodder resources and management is formalized. The key characteristic of spatial adaptation is defined as a distribution of time of stay of populations in those or reservoir areas. It has appeared that this vector of times of stay is own positive vector of a final matrix of moving of populations. The basic laws of coadapation are found numerically out cooperating populations.
Keywords: evolutionary modeling, optimal control, vector of time of stay.
Mots-clés : spatial adaptation
@article{MM_2012_24_10_a1,
     author = {V. G. Il'ichev},
     title = {Hypotheses about laws of biological adaptation. {Computer} experiments},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {15--32},
     publisher = {mathdoc},
     volume = {24},
     number = {10},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2012_24_10_a1/}
}
TY  - JOUR
AU  - V. G. Il'ichev
TI  - Hypotheses about laws of biological adaptation. Computer experiments
JO  - Matematičeskoe modelirovanie
PY  - 2012
SP  - 15
EP  - 32
VL  - 24
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2012_24_10_a1/
LA  - ru
ID  - MM_2012_24_10_a1
ER  - 
%0 Journal Article
%A V. G. Il'ichev
%T Hypotheses about laws of biological adaptation. Computer experiments
%J Matematičeskoe modelirovanie
%D 2012
%P 15-32
%V 24
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2012_24_10_a1/
%G ru
%F MM_2012_24_10_a1
V. G. Il'ichev. Hypotheses about laws of biological adaptation. Computer experiments. Matematičeskoe modelirovanie, Tome 24 (2012) no. 10, pp. 15-32. http://geodesic.mathdoc.fr/item/MM_2012_24_10_a1/

[1] Marri Dzh., Nelineinye differentsialnye uravneniya v biologii. Lektsii o modelyakh, Mir, M., 1983, 397 pp.

[2] Svirezhev Yu. M., Nelineinye volny, dissipativnye struktury i katastrofy v ekologii, Nauka, M., 1987, 365 pp. | MR | Zbl

[3] Berezovskaya F. S., Karev G. P., “Bifurkatsii beguschikh voln v modelyakh populyatsii s taksisom”, Uspekhi fizicheskikh nauk, 1999, no. 9, 1011–1024 | DOI

[4] Ilichev V. G., “Konkurentsiya i adaptatsiya v soobschestve migriruyuschikh rybnykh populyatsii”, Biofizika, 57:2 (2012), 356–367 | MR

[5] Ilichev V. G., ““Nelineinye skelety” v prostranstvenno-vremennykh modelyakh ekologii”, Matemat. modelirovanie, 23:2 (2011), 125–147 | MR

[6] Ilichev V. G., “Vypuklye struktury v modelyakh ekologii”, Matemat. modelirovanie, 2007, no. 4, 90–102 | MR | Zbl

[7] Roberts F. S., Diskretnye matematicheskie modeli s prilozheniem k sotsialnym, biologicheskim i ekologicheskim zadacham, Nauka, M., 1986, 495 pp. | MR | Zbl

[8] Fogel L., Ouens A., Uolsh M., Iskusstvennyi intellekt i evolyutsionnoe modelirovanie, Mir, M., 1969, 210 pp.

[9] Ilichev V. G., “Adaptatsiya parametrov v modelyakh populyatsii”, Zhurnal obschei biologii, 66:2 (2005), 171–179 | MR

[10] Bellman R., Vvedenie v teoriyu matrits, Nauka, M., 1976, 351 pp. | MR

[11] Ilichev V. G., Rokhlin D. B., Ugolnitskii G. A., “Ob ekonomicheskikh mekhanizmakh upravleniya bioresursami”, Izv. RAN. Teoriya i sistemy upravleniya, 2000, no. 4, 104–110 | MR

[12] Bellman R., Dinamicheskoe programmirovanie, IL, M., 1960, 400 pp. | MR