About implementation of boundary conditions in the bicompact schemes for a linear transport equation
Matematičeskoe modelirovanie, Tome 24 (2012) no. 10, pp. 3-14

Voir la notice de l'article provenant de la source Math-Net.Ru

The question of the boundary conditions implementation in the previously proposed bicompact schemes is investigated for the linear transfer equation. These schemes are constructed by the method of lines, they are conservative, monotonic and economical, and can be solved by running method. To ensure a high accuracy of the bicompact schemes, the various ways of implementing boundary conditions are proposed. These schemes are based on the $A$-and $L$-stable diagonally implicit Runge–Kutta of third-order approximation for the integration of the transfer equation in time.
Keywords: linear transport equation, bicompact difference schemes, diagonally implicit Runge–Kutta schemes.
@article{MM_2012_24_10_a0,
     author = {E. N. Aristova and B. V. Rogov},
     title = {About implementation of boundary conditions in the bicompact schemes for a linear transport equation},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {3--14},
     publisher = {mathdoc},
     volume = {24},
     number = {10},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2012_24_10_a0/}
}
TY  - JOUR
AU  - E. N. Aristova
AU  - B. V. Rogov
TI  - About implementation of boundary conditions in the bicompact schemes for a linear transport equation
JO  - Matematičeskoe modelirovanie
PY  - 2012
SP  - 3
EP  - 14
VL  - 24
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2012_24_10_a0/
LA  - ru
ID  - MM_2012_24_10_a0
ER  - 
%0 Journal Article
%A E. N. Aristova
%A B. V. Rogov
%T About implementation of boundary conditions in the bicompact schemes for a linear transport equation
%J Matematičeskoe modelirovanie
%D 2012
%P 3-14
%V 24
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2012_24_10_a0/
%G ru
%F MM_2012_24_10_a0
E. N. Aristova; B. V. Rogov. About implementation of boundary conditions in the bicompact schemes for a linear transport equation. Matematičeskoe modelirovanie, Tome 24 (2012) no. 10, pp. 3-14. http://geodesic.mathdoc.fr/item/MM_2012_24_10_a0/