About implementation of boundary conditions in the bicompact schemes for a linear transport equation
Matematičeskoe modelirovanie, Tome 24 (2012) no. 10, pp. 3-14.

Voir la notice de l'article provenant de la source Math-Net.Ru

The question of the boundary conditions implementation in the previously proposed bicompact schemes is investigated for the linear transfer equation. These schemes are constructed by the method of lines, they are conservative, monotonic and economical, and can be solved by running method. To ensure a high accuracy of the bicompact schemes, the various ways of implementing boundary conditions are proposed. These schemes are based on the $A$-and $L$-stable diagonally implicit Runge–Kutta of third-order approximation for the integration of the transfer equation in time.
Keywords: linear transport equation, bicompact difference schemes, diagonally implicit Runge–Kutta schemes.
@article{MM_2012_24_10_a0,
     author = {E. N. Aristova and B. V. Rogov},
     title = {About implementation of boundary conditions in the bicompact schemes for a linear transport equation},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {3--14},
     publisher = {mathdoc},
     volume = {24},
     number = {10},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2012_24_10_a0/}
}
TY  - JOUR
AU  - E. N. Aristova
AU  - B. V. Rogov
TI  - About implementation of boundary conditions in the bicompact schemes for a linear transport equation
JO  - Matematičeskoe modelirovanie
PY  - 2012
SP  - 3
EP  - 14
VL  - 24
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2012_24_10_a0/
LA  - ru
ID  - MM_2012_24_10_a0
ER  - 
%0 Journal Article
%A E. N. Aristova
%A B. V. Rogov
%T About implementation of boundary conditions in the bicompact schemes for a linear transport equation
%J Matematičeskoe modelirovanie
%D 2012
%P 3-14
%V 24
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2012_24_10_a0/
%G ru
%F MM_2012_24_10_a0
E. N. Aristova; B. V. Rogov. About implementation of boundary conditions in the bicompact schemes for a linear transport equation. Matematičeskoe modelirovanie, Tome 24 (2012) no. 10, pp. 3-14. http://geodesic.mathdoc.fr/item/MM_2012_24_10_a0/

[1] A. V. Shilkov, S. V. Shilkova, E. N. Aristova, V. Ya. Goldin, “Ekonomichnye pretsizionnye raschety atmosfernoi radiatsii na osnove sistemy ATRAD”, DAN, 369:5 (1999), 611–613

[2] E. N. Aristova, V. Ya. Gol'din, “Computation of anisotropy scattering of solar radiation in atmosphere (monoenergetic case)”, Journal of Quantitative Spectroscopy Radiative Transfer, 67 (2000), 139–157 | DOI

[3] E. N. Aristova, D. F. Baidin, V. Ya. Goldin, “Dva varianta ekonomichnogo metoda resheniya uravneniya perenosa v $r-z$ geometrii na osnove perekhoda k peremennym Vladimirova”, Matematicheskoe modelirovanie, 18:7 (2006), 43–52 | MR | Zbl

[4] E. N. Aristova, V. Ya. Goldin, “Raschet uravneniya perenosa neitronov sovmestno s uravneniyami kvazidiffuzii v $r-z$ geometrii”, Matematicheskoe modelirovanie, 18:11 (2006), 61–66 | MR | Zbl

[5] D. F. Baydin, E. N. Aristova, V. Ya. Gol'din, “Comparison of the efficiency of the transport equation calculation methods in characteristics variables”, Transport Theory and Statistical Physics, 37:02–04 (2008), 286–306 | DOI | MR | Zbl

[6] V. Ya. Goldin, G. A. Pestryakova, Yu. V. Troschiev, E. N. Aristova, “Issledovanie samoreguliruemogo neitronno-yadernogo rezhima 2-go roda v bystrom reaktore”, Matematicheskoe modelirovanie, 12:4 (2000), 33–38

[7] E. N. Aristova, “Simulation of radiation transport in channel on the basis of quasi-diffusion method”, Transport Theory and Statistical Physics, 37:05–07 (2008), 483–503 | DOI | MR | Zbl

[8] E. N. Aristova, Modelirovanie vzaimodeistviya izlucheniya s veschestvom. Primenenie metoda kvazidiffuzii, LAP Lambert Academic Publishing, Saarbrucken, Germany, 2011, 297 pp.

[9] E. N. Aristova, “Modelirovanie protsessov perenosa energii lazernogo impulsa pri suschestvennoi roli sobstvennogo izlucheniya plazmy na osnove kompleksa LATRANT”, Problemy vychislitelnoi matematiki, matematicheskogo modelirovaniya i informatiki, MZ Press, M., 2006, 7–33

[10] L. P. Bass, O. V. Nikolaeva, V. S. Kuznetsov i dr., “Modelirovanie rasprostraneniya opticheskogo izlucheniya v fantome biologicheskoi tkani na superEVM MVS1000/M”, Matematicheskoe modelirovanie, 18:1 (2006), 29–42 | MR | Zbl

[11] V. S. Kuznetsov, O. V. Nikolaeva, L. P. Bass i dr., “Modelirovanie rasprostraneniya ultrakorotkogo impulsa sveta cherez silno rasseivayuschuyu sredu”, Matematicheskoe modelirovanie, 21:4 (2009), 3–14 | Zbl

[12] B. V. Rogov, M. N. Mikhailovskaya, “Monotonnye bikompaktnye skhemy dlya lineinogo uravneniya perenosa”, DAN, 436:5 (2011), 600–605 | MR | Zbl

[13] B. V. Rogov, M. N. Mikhailovskaya, “Monotonnye bikompaktnye skhemy dlya lineinogo uravneniya perenosa”, Matematicheskoe modelirovanie, 23:6 (2011), 98–110 | MR | Zbl

[14] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1989, 616 pp. | MR

[15] K. Dekker, Ya. Verver, Ustoichivost metodov Runge–Kutty dlya zhestkikh nelineinykh differentsialnykh uravnenii, Mir, M., 1988, 334 pp. | MR

[16] H. H. Kalitkin, Chislennye metody, Nauka, M., 1978, 512 pp. | MR

[17] B. V. Rogov, M. N. Mikhailovskaya, “Bikompaktnye skhemy chetvertogo poryadka approksimatsii dlya giperbolicheskikh uravnenii”, DAN, 430:4 (2010), 470–474 | MR | Zbl

[18] N. N. Kalitkin, P. V. Koryakin, “Bikompaktnye skhemy i sloistye sredy”, DAN, 419:6 (2008), 744–748 | MR | Zbl

[19] U. G. Pirumov, Chislennye metody, Drofa, M., 2007, 221 pp.

[20] N. N. Kalitkin, “Chislennye metody resheniya zhestkikh sistem”, Matematicheskoe modelirovanie, 7:5 (1995), 8–11 | Zbl

[21] E. Khairer, G. Vanner, Reshenie obyknovennykh differentsialnykh uravnenii. Zhestkie i differentsialno-algebraicheskie zadachi, Mir, M., 1999, 685 pp.

[22] H. H. Kalitkin, A. B. Alshin, E. A. Alshina, B. V. Rogov, Vychisleniya na kvaziravnomernykh setkakh, Fizmatlit, M., 2005, 224 pp.

[23] B. V. Rogov, M. N. Mikhailovskaya, “O skhodimosti kompaktnykh raznostnykh skhem”, Matematicheskoe modelirovanie, 20:1 (2008), 99–116 | MR | Zbl

[24] E. A. Alshina, E. M. Zaks, N. N. Kalitkin, “Optimalnye parametry yavnykh skhem Runge–Kutty nevysokikh poryadkov”, Matematicheskoe modelirovanie, 18:2 (2006), 61–71 | MR | Zbl

[25] E. A. Alshina, E. M. Zaks, N. N. Kalitkin, “Optimalnye skhemy Runge–Kutty s pervogo po shestoi poryadok tochnosti”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 48:3 (2008), 418–429 | MR | Zbl