Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2012_24_10_a0, author = {E. N. Aristova and B. V. Rogov}, title = {About implementation of boundary conditions in the bicompact schemes for a linear transport equation}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {3--14}, publisher = {mathdoc}, volume = {24}, number = {10}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2012_24_10_a0/} }
TY - JOUR AU - E. N. Aristova AU - B. V. Rogov TI - About implementation of boundary conditions in the bicompact schemes for a linear transport equation JO - Matematičeskoe modelirovanie PY - 2012 SP - 3 EP - 14 VL - 24 IS - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2012_24_10_a0/ LA - ru ID - MM_2012_24_10_a0 ER -
%0 Journal Article %A E. N. Aristova %A B. V. Rogov %T About implementation of boundary conditions in the bicompact schemes for a linear transport equation %J Matematičeskoe modelirovanie %D 2012 %P 3-14 %V 24 %N 10 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2012_24_10_a0/ %G ru %F MM_2012_24_10_a0
E. N. Aristova; B. V. Rogov. About implementation of boundary conditions in the bicompact schemes for a linear transport equation. Matematičeskoe modelirovanie, Tome 24 (2012) no. 10, pp. 3-14. http://geodesic.mathdoc.fr/item/MM_2012_24_10_a0/
[1] A. V. Shilkov, S. V. Shilkova, E. N. Aristova, V. Ya. Goldin, “Ekonomichnye pretsizionnye raschety atmosfernoi radiatsii na osnove sistemy ATRAD”, DAN, 369:5 (1999), 611–613
[2] E. N. Aristova, V. Ya. Gol'din, “Computation of anisotropy scattering of solar radiation in atmosphere (monoenergetic case)”, Journal of Quantitative Spectroscopy Radiative Transfer, 67 (2000), 139–157 | DOI
[3] E. N. Aristova, D. F. Baidin, V. Ya. Goldin, “Dva varianta ekonomichnogo metoda resheniya uravneniya perenosa v $r-z$ geometrii na osnove perekhoda k peremennym Vladimirova”, Matematicheskoe modelirovanie, 18:7 (2006), 43–52 | MR | Zbl
[4] E. N. Aristova, V. Ya. Goldin, “Raschet uravneniya perenosa neitronov sovmestno s uravneniyami kvazidiffuzii v $r-z$ geometrii”, Matematicheskoe modelirovanie, 18:11 (2006), 61–66 | MR | Zbl
[5] D. F. Baydin, E. N. Aristova, V. Ya. Gol'din, “Comparison of the efficiency of the transport equation calculation methods in characteristics variables”, Transport Theory and Statistical Physics, 37:02–04 (2008), 286–306 | DOI | MR | Zbl
[6] V. Ya. Goldin, G. A. Pestryakova, Yu. V. Troschiev, E. N. Aristova, “Issledovanie samoreguliruemogo neitronno-yadernogo rezhima 2-go roda v bystrom reaktore”, Matematicheskoe modelirovanie, 12:4 (2000), 33–38
[7] E. N. Aristova, “Simulation of radiation transport in channel on the basis of quasi-diffusion method”, Transport Theory and Statistical Physics, 37:05–07 (2008), 483–503 | DOI | MR | Zbl
[8] E. N. Aristova, Modelirovanie vzaimodeistviya izlucheniya s veschestvom. Primenenie metoda kvazidiffuzii, LAP Lambert Academic Publishing, Saarbrucken, Germany, 2011, 297 pp.
[9] E. N. Aristova, “Modelirovanie protsessov perenosa energii lazernogo impulsa pri suschestvennoi roli sobstvennogo izlucheniya plazmy na osnove kompleksa LATRANT”, Problemy vychislitelnoi matematiki, matematicheskogo modelirovaniya i informatiki, MZ Press, M., 2006, 7–33
[10] L. P. Bass, O. V. Nikolaeva, V. S. Kuznetsov i dr., “Modelirovanie rasprostraneniya opticheskogo izlucheniya v fantome biologicheskoi tkani na superEVM MVS1000/M”, Matematicheskoe modelirovanie, 18:1 (2006), 29–42 | MR | Zbl
[11] V. S. Kuznetsov, O. V. Nikolaeva, L. P. Bass i dr., “Modelirovanie rasprostraneniya ultrakorotkogo impulsa sveta cherez silno rasseivayuschuyu sredu”, Matematicheskoe modelirovanie, 21:4 (2009), 3–14 | Zbl
[12] B. V. Rogov, M. N. Mikhailovskaya, “Monotonnye bikompaktnye skhemy dlya lineinogo uravneniya perenosa”, DAN, 436:5 (2011), 600–605 | MR | Zbl
[13] B. V. Rogov, M. N. Mikhailovskaya, “Monotonnye bikompaktnye skhemy dlya lineinogo uravneniya perenosa”, Matematicheskoe modelirovanie, 23:6 (2011), 98–110 | MR | Zbl
[14] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1989, 616 pp. | MR
[15] K. Dekker, Ya. Verver, Ustoichivost metodov Runge–Kutty dlya zhestkikh nelineinykh differentsialnykh uravnenii, Mir, M., 1988, 334 pp. | MR
[16] H. H. Kalitkin, Chislennye metody, Nauka, M., 1978, 512 pp. | MR
[17] B. V. Rogov, M. N. Mikhailovskaya, “Bikompaktnye skhemy chetvertogo poryadka approksimatsii dlya giperbolicheskikh uravnenii”, DAN, 430:4 (2010), 470–474 | MR | Zbl
[18] N. N. Kalitkin, P. V. Koryakin, “Bikompaktnye skhemy i sloistye sredy”, DAN, 419:6 (2008), 744–748 | MR | Zbl
[19] U. G. Pirumov, Chislennye metody, Drofa, M., 2007, 221 pp.
[20] N. N. Kalitkin, “Chislennye metody resheniya zhestkikh sistem”, Matematicheskoe modelirovanie, 7:5 (1995), 8–11 | Zbl
[21] E. Khairer, G. Vanner, Reshenie obyknovennykh differentsialnykh uravnenii. Zhestkie i differentsialno-algebraicheskie zadachi, Mir, M., 1999, 685 pp.
[22] H. H. Kalitkin, A. B. Alshin, E. A. Alshina, B. V. Rogov, Vychisleniya na kvaziravnomernykh setkakh, Fizmatlit, M., 2005, 224 pp.
[23] B. V. Rogov, M. N. Mikhailovskaya, “O skhodimosti kompaktnykh raznostnykh skhem”, Matematicheskoe modelirovanie, 20:1 (2008), 99–116 | MR | Zbl
[24] E. A. Alshina, E. M. Zaks, N. N. Kalitkin, “Optimalnye parametry yavnykh skhem Runge–Kutty nevysokikh poryadkov”, Matematicheskoe modelirovanie, 18:2 (2006), 61–71 | MR | Zbl
[25] E. A. Alshina, E. M. Zaks, N. N. Kalitkin, “Optimalnye skhemy Runge–Kutty s pervogo po shestoi poryadok tochnosti”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 48:3 (2008), 418–429 | MR | Zbl