Fast Markowitz’s critical line algorithm
Matematičeskoe modelirovanie, Tome 23 (2011) no. 9, pp. 120-134.

Voir la notice de l'article provenant de la source Math-Net.Ru

The mean-variance portfolio analysis pioneered by Nobel Prize winner H. Markowitz (1990) lies at the foundation of the modern portfolio theory. The method and the resulting set of efficient portfolios display notable robustness and continue to attract researchers. In recent years, Monte Carlo methods used for portfolio resampling to get statistically stable portfolios. These methods repeatedly employ quadratic optimization algorithms and, therefore, require a fast implementation of the mean variance optimizer. Andras Niedermayer and Daniel Niedermayer have developed recently fast algorithm of the kind which significantly outperforms all known software packages. We apply Critical Line Algorithm to obtain algorithm faster than Niedermayers’variant at least two times. It needs more thoroughly investigation of Markowitz’s problem.
Keywords: portfolio selection, critical line method, corner portfolios, corner points, quadratic optimization algorithms.
Mots-clés : minimal frontier
@article{MM_2011_23_9_a8,
     author = {V. A. Babaitsev and A. V. Brailov and V. Yu. Popov},
     title = {Fast {Markowitz{\textquoteright}s} critical line algorithm},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {120--134},
     publisher = {mathdoc},
     volume = {23},
     number = {9},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2011_23_9_a8/}
}
TY  - JOUR
AU  - V. A. Babaitsev
AU  - A. V. Brailov
AU  - V. Yu. Popov
TI  - Fast Markowitz’s critical line algorithm
JO  - Matematičeskoe modelirovanie
PY  - 2011
SP  - 120
EP  - 134
VL  - 23
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2011_23_9_a8/
LA  - ru
ID  - MM_2011_23_9_a8
ER  - 
%0 Journal Article
%A V. A. Babaitsev
%A A. V. Brailov
%A V. Yu. Popov
%T Fast Markowitz’s critical line algorithm
%J Matematičeskoe modelirovanie
%D 2011
%P 120-134
%V 23
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2011_23_9_a8/
%G ru
%F MM_2011_23_9_a8
V. A. Babaitsev; A. V. Brailov; V. Yu. Popov. Fast Markowitz’s critical line algorithm. Matematičeskoe modelirovanie, Tome 23 (2011) no. 9, pp. 120-134. http://geodesic.mathdoc.fr/item/MM_2011_23_9_a8/

[1] Markowitz H. M., Portfolio Selection: Efficient Diversification of Investments, 2nd ed., Wiley, New York, 1991 ; Basil Blackwell, Cambridge, MA, 1959, 344 pp. | MR

[2] Babaitsev V. A., Gisin V. B., Matematicheskie osnovy finansovogo analiza, FA, M., 2005, 199 pp.

[3] Popov V. Yu., Shapoval A. B., Investitsii. Matematicheskie metody, Forum, M., 2008, 144 pp.

[4] Jorion P., “Portfolio Optimization in Practice”, Financial Ananlysts Journal, 48:1 (1992), 68–74 | DOI

[5] Michaud R., Efficient Asset Management: A Practical Guide to Stock Portfolio Optimization, Oxford University Press, Oxford, 1998, 156 pp.

[6] Markowitz H. M., Usmen N., “Resampled Frontiers vs Diffuse Bayes”, 1, no. 4, 2003, 9–25

[7] Scherer B., “Portfolio Resampling: Review and Critique”, Financial Analysts Journal, 58:6 (2002), 98–109 | DOI | MR

[8] Wolf M., Resampling vs. Shrinkage for Benchmarked Managers, Working Papers iewwp 263, Institute for Empirical Research in Economics. IEW, 2006 http://www.ideas.repec.org/p/zur/iewwpx/263.html

[9] Niedermayer A., Niedermayer D., “Applying Markowitz's Critical Line Algorithm”, Handbook of Portfolio Construction. Contemporary Applications of Markowitz Techniques, ed. John B. Guerard(jr.), Springer, 2010, 792 pp. | Zbl

[10] Hirschberger M., Qi Y., Steuer R. E., “Quadratic Parametric Programming for Portfolio Selection with Random Problem Generation and Computational Experience”, Working papers, Terry College of Business, University of Georgia, 2004

[11] Markowitz H. M., Todd P., “Mean-Variance Analysis in Portfolio Choice and Capital Markets”, Fabozzi Associates, ed. Frank J., New Hope, PA, 384 pp.

[12] Scherer B., Martin D. R., Introduction to Modern Portfolio Optimization with NuOpt, S-Plus and S+Bayes, 1st ed., Springer, New York, 2006, 416 pp.

[13] Steuer R. E., Qi Y., Hirschberger M., “Portfolio Optimization: New Capabalities and Future Methods”, Zeitschrift fur BWL, 76:2 (2006), 199–219

[14] Wolfe P., “The Simplex Method for Quadratic Programming”, Econometrica, 27:3 (1959), 382–398 | DOI | MR | Zbl

[15] Ukhov Andrey D., “Expanding the Frontier One Asset at a Time”, Finance Research Letters, 3 (2006), 194–206 | DOI