Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2011_23_9_a2, author = {A. S. Nuzhny}, title = {Bayesian regularization in the problem of point-by-point function approximation using orthogonalized basis}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {33--42}, publisher = {mathdoc}, volume = {23}, number = {9}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2011_23_9_a2/} }
TY - JOUR AU - A. S. Nuzhny TI - Bayesian regularization in the problem of point-by-point function approximation using orthogonalized basis JO - Matematičeskoe modelirovanie PY - 2011 SP - 33 EP - 42 VL - 23 IS - 9 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2011_23_9_a2/ LA - ru ID - MM_2011_23_9_a2 ER -
A. S. Nuzhny. Bayesian regularization in the problem of point-by-point function approximation using orthogonalized basis. Matematičeskoe modelirovanie, Tome 23 (2011) no. 9, pp. 33-42. http://geodesic.mathdoc.fr/item/MM_2011_23_9_a2/
[1] A. N. Tikhonov, V. Ya. Arsenin, Metody resheniya nekorrektnykh zadach, Izd. 2-e, Nauka, M., 1979 | MR
[2] D. MacKay, “Bayesian interpolation”, Neural Computation, 4 (1992), 415–447 | DOI
[3] A. S. Nuzhnyi, S. A. Shumskii, “Regulyarizatsiya Baiesa v zadache approksimatsii funktsii mnogikh peremennykh”, Matematicheskoe modelirovanie, 15:9 (2003), 55–63
[4] S. A. Shumskii, Baiesova regulyarizatsiya obucheniya, Materialy shkoly-seminara “Sovremennye problemy neiroinformatiki”, Moskva, 2002 | Zbl
[5] A. P. Dempster, N. M. Laird, D. B. Rubin, “Maximum likelyhood from incomplete data via the EM algorithm”, Journal of the Royal Statistical Society. Ser. B, 39:1 (1977), 1–38 | MR | Zbl
[6] A. Hyvarinen, J. Karhunen, E. Oja, Independent Component analysis, A Wiley-Interscience Publication, 2001
[7] L. D. Landau, E. M. Lifshits, Teoreticheskaya fizika, v. 3, Kvantovaya mekhanika, Nauka, Moskva, 1989 | MR
[8] T. Kohonen, Self-organizing maps, Springer Series in Information Sciences, 30, ed. 3, Springer-Verlag, Berlin, 2001 | DOI | MR | Zbl