The condition number of the double-period method
Matematičeskoe modelirovanie, Tome 23 (2011) no. 8, pp. 89-96.

Voir la notice de l'article provenant de la source Math-Net.Ru

The double-period method [1] uses special trigonometric series decomposition for approximation and extrapolation of smooth non-periodical functions. It has a number of advantages. In paper [2] the method and its properties and parameters were studied for concrete applications. However the method accuracy was estimated empirically, basing on the model cases considered. The principal difficulty is the need to solve an ill-posed system of linear equations. Proposing a new adequate condition criteria and applying it to the method is the main subject of this study. Optimal parameters of the method proposed in [2] are adjusted to allow controlling arithmetic calculation error and achieve better accuracy of the approximation.
Keywords: functions approximation, double period, conditionality.
@article{MM_2011_23_8_a7,
     author = {K. I. Lutskiy},
     title = {The condition number of the double-period method},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {89--96},
     publisher = {mathdoc},
     volume = {23},
     number = {8},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2011_23_8_a7/}
}
TY  - JOUR
AU  - K. I. Lutskiy
TI  - The condition number of the double-period method
JO  - Matematičeskoe modelirovanie
PY  - 2011
SP  - 89
EP  - 96
VL  - 23
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2011_23_8_a7/
LA  - ru
ID  - MM_2011_23_8_a7
ER  - 
%0 Journal Article
%A K. I. Lutskiy
%T The condition number of the double-period method
%J Matematičeskoe modelirovanie
%D 2011
%P 89-96
%V 23
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2011_23_8_a7/
%G ru
%F MM_2011_23_8_a7
K. I. Lutskiy. The condition number of the double-period method. Matematičeskoe modelirovanie, Tome 23 (2011) no. 8, pp. 89-96. http://geodesic.mathdoc.fr/item/MM_2011_23_8_a7/

[1] Kalitkin N. N., Kuzmina L. V., “Approksimatsiya i ekstrapolyatsiya tabulirovannykh funktsii”, DAN, 374:4 (2000), 464–468 | MR

[2] Kalitkin N. N., Lutskii K. I., “Optimalnye parametry metoda dvoinogo perioda”, Matematicheskoe modelirovanie, 19:1 (2007)

[3] Sege G., Ortogonalnye mnogochleny, Fizmatgiz, M., 1962

[4] Kalitkin N. N., Yukhno L. F., Kuzmina L. V., “Kriterii obuslovlennosti sistem algebraicheskikh uravnenii”, DAN, 434:4 (2010), 1–4

[5] Kalitkin N. N., Lutskii K. I., “Approksimatsiya gladkikh poverkhnostei metodom dvoinogo perioda”, Matematicheskoe modelirovanie, 22:2 (2010), 64–68 | MR | Zbl