Numerical-analytical algorithm for estimating the predictability of crashes
Matematičeskoe modelirovanie, Tome 23 (2011) no. 8, pp. 65-74.

Voir la notice de l'article provenant de la source Math-Net.Ru

The papers construct a numerical-analytical algorithm predicting that within a certain time after the occurrence of collapse the next crash comes. This algorithm is applied to a sequence of crashes of most important stock market indices. The predictability of all studied sequences is justified to be essentially above the unpredictability of the Poisson process in terms of the modified errors of the first and second kind. Computer simulations show that, with respect to their predictive properties, European and U.S. indices could be combined into one class that does not include Russian and Asian indices.
Keywords: prediction algorithm, error diagram, financial time series.
@article{MM_2011_23_8_a5,
     author = {A. B. Shapoval and V. Yu. Popov},
     title = {Numerical-analytical algorithm for estimating the predictability of crashes},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {65--74},
     publisher = {mathdoc},
     volume = {23},
     number = {8},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2011_23_8_a5/}
}
TY  - JOUR
AU  - A. B. Shapoval
AU  - V. Yu. Popov
TI  - Numerical-analytical algorithm for estimating the predictability of crashes
JO  - Matematičeskoe modelirovanie
PY  - 2011
SP  - 65
EP  - 74
VL  - 23
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2011_23_8_a5/
LA  - ru
ID  - MM_2011_23_8_a5
ER  - 
%0 Journal Article
%A A. B. Shapoval
%A V. Yu. Popov
%T Numerical-analytical algorithm for estimating the predictability of crashes
%J Matematičeskoe modelirovanie
%D 2011
%P 65-74
%V 23
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2011_23_8_a5/
%G ru
%F MM_2011_23_8_a5
A. B. Shapoval; V. Yu. Popov. Numerical-analytical algorithm for estimating the predictability of crashes. Matematičeskoe modelirovanie, Tome 23 (2011) no. 8, pp. 65-74. http://geodesic.mathdoc.fr/item/MM_2011_23_8_a5/

[1] Anatolev S., Ekonometrika dlya podgotovlennykh i prodolzhayuschikh, Rossiiskaya ekonomicheskaya shkola, 2003, 124 pp.

[2] Lukashin Yu. P., “Statisticheskie metody izucheniya fondovogo rynka”, Voprosy statistiki, 1995, no. 7, 14–21

[3] Caner C., Hansen B. E., “Threshold Autoregression with a Unit Root”, Econometrica, 69 (2001), 1555–1596 | DOI | MR | Zbl

[4] Scheinkman J. A., LeBaron B., “Nonlinear dynamics and stock returns”, J. Business, 62 (1989), 311–338 | DOI

[5] Rapach D. E., Wohar M. E., “Structural breaks and predictive regressions models of aggregate U.S. stock returns”, Journal of Financial Econometrics, 4 (2006), 248–274 | DOI

[6] Orlov Yu. N., Osminin K. P., “Postroenie vyborochnoi funktsii raspredeleniya dlya prognozirovaniya nestatsionarnogo vremennogo ryada”, Matematicheskoe modelirovanie, 20:9 (2008), 23–34 | MR

[7] Keilis-Borok V. I., “Fundamentals of Earthquake Prediction: Four Paradigms”, Nonlinear Dynamics of the Lithosphere and Earthquake Prediction, eds. V. I. Keilis-Borok, A. A. Soloviev, Springer-Verlag, Heidelberg, 2003, 1–36

[8] Molchan G. M., “Optimalnye strategii v prognoze zemletryasenii. Sovremennye metody interpretatsii seismologicheskikh dannykh”, Vychislitelnaya seismologiya, 1991, no. 24, 3–18

[9] Al-Anaswah N., Wilfling B., Identification of Speculative Bubbles Using State-Space Models with Markov-Switching, Social Science Research Network, 2009 http://www.http://ssrn.com/abstract=1341730

[10] Sornette D., Zhou W.-X., “Predictability of large future changes in major financial indices”, International Journal of Forecasting, 22 (2006), 153–168 | DOI

[11] Shapoval A. B., “Prediction problem for target events based on the inter-event waiting time”, Physica A, 389 (2010), 5145–5154 | DOI

[12] Granger C. W. J., Machina M. J., “Forecasting and decision theory”, Handbook of economic forecasting, v. 1, eds. Elliott G., Granger C. W. J., Elsevier, 2006, 81–98 | DOI