Dynamic programming for singular control synthesis in the models of plant ontogenesis
Matematičeskoe modelirovanie, Tome 23 (2011) no. 8, pp. 33-45.

Voir la notice de l'article provenant de la source Math-Net.Ru

Two models of regulation processes in high plants are considered: the biological switch between vegetative and generative stages and shoot-root balanced growth. The basic hypothesis is the optimality of corresponding mechanisms. It allows developing the models in the form of mathematical problem of optimal control with singular branches of optimal solution. The method for numerical analysis is presented. It is grounded on the transformation of initial problem of functional maximization to the problem of optimal operation speed and on it’s solving by means of discrete dynamic programming.
Keywords: principle of optimality, singular control, dynamic programming, production process, organogenesis, phenological development.
@article{MM_2011_23_8_a2,
     author = {Yu. G. Ispolov and A. G. Topaj},
     title = {Dynamic programming for singular control synthesis in the models of plant ontogenesis},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {33--45},
     publisher = {mathdoc},
     volume = {23},
     number = {8},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2011_23_8_a2/}
}
TY  - JOUR
AU  - Yu. G. Ispolov
AU  - A. G. Topaj
TI  - Dynamic programming for singular control synthesis in the models of plant ontogenesis
JO  - Matematičeskoe modelirovanie
PY  - 2011
SP  - 33
EP  - 45
VL  - 23
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2011_23_8_a2/
LA  - ru
ID  - MM_2011_23_8_a2
ER  - 
%0 Journal Article
%A Yu. G. Ispolov
%A A. G. Topaj
%T Dynamic programming for singular control synthesis in the models of plant ontogenesis
%J Matematičeskoe modelirovanie
%D 2011
%P 33-45
%V 23
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2011_23_8_a2/
%G ru
%F MM_2011_23_8_a2
Yu. G. Ispolov; A. G. Topaj. Dynamic programming for singular control synthesis in the models of plant ontogenesis. Matematičeskoe modelirovanie, Tome 23 (2011) no. 8, pp. 33-45. http://geodesic.mathdoc.fr/item/MM_2011_23_8_a2/

[1] Rozen R., Printsip optimalnosti v biologii, Mir, M., 1969, 216 pp.

[2] Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R. V., Mischenko E. F., Matematicheskaya teoriya optimalnykh protsessov, Nauka, M., 1983, 392 pp. | MR | Zbl

[3] Kirk D. E., Optimal Control Theory. An Introduction, Dover Publications Inc., Mineola, New York, 1998, 472 pp.

[4] Sethi S., Thompson G., Optimal Control Theory. Applications to Management Science and Economics, Springer, 2005 | MR

[5] Topazh A. G., Poluektov R. A., “Printsip optimalnosti v matematicheskikh modelyakh organogeneza”, Matematicheskoe modelirovanie, 17:7 (2005), 59–73

[6] Iwasa Y., Roughgarden J., “Shoot/Root Balance of Plants: Optimal Growth of a System with Many Vegetative Organs”, Theoretical Population Biology, 25 (1984), 78–105 | DOI | MR | Zbl

[7] Insarov G. E., “Stupenchataya model rosta i razmnozheniya organizmov”, Kolichestvennye aspekty rosta organizmov, Nauka, M., 1975, 114 pp.

[8] Yamamura N., Fujita N., Hayashi M., Nakamura Y., Yamauchi A., “Optimal phenology of annual plants under grazing pressure”, Journal of Theoretical Biology, 246 (2007), 530–537 | DOI | MR

[9] Topaj A. G., Poluektov R. A., “Simulation of Plant Phenology in Complex Agroecosystem Models as an Optimal Control Problem”, Selected Papers of 20th International Conference “Continuous Optimization and Knowledge-Based Technologies” (May 20-23 2008), Neringa, Lithuania, 87–92