Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2011_23_7_a9, author = {A. D. Galeev and S. I. Ponikarov and A. A. Salin}, title = {Modelling of the binary solution spill consequences using {FLUENTsoftware}}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {129--144}, publisher = {mathdoc}, volume = {23}, number = {7}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2011_23_7_a9/} }
TY - JOUR AU - A. D. Galeev AU - S. I. Ponikarov AU - A. A. Salin TI - Modelling of the binary solution spill consequences using FLUENTsoftware JO - Matematičeskoe modelirovanie PY - 2011 SP - 129 EP - 144 VL - 23 IS - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2011_23_7_a9/ LA - ru ID - MM_2011_23_7_a9 ER -
A. D. Galeev; S. I. Ponikarov; A. A. Salin. Modelling of the binary solution spill consequences using FLUENTsoftware. Matematičeskoe modelirovanie, Tome 23 (2011) no. 7, pp. 129-144. http://geodesic.mathdoc.fr/item/MM_2011_23_7_a9/
[1] Metodicheskie ukazaniya po otsenke posledstvii avariinykh vybrosov opasnykh veschestv, RD-03-26-2007, utv. prikazom No 859 Federalnoi sluzhby po ekologicheskomu, tekhnologicheskomu i atomnomu nadzoru ot 14 dekabrya 2007 g.
[2] Methods for the calculation of physical effects due to releases of hazardous materials (liquids and gases), TNO Yellow Book, Committee for the Prevention of Disasters, CRP 14E, The Hague, The Netherlands, 1997, 870 pp.
[3] Chan S. T., Ermak D. L., Morris L. K., “FEM3 model simulations of selected Thorney Island Phase I trials”, Journal of Hazardous Materials, 16 (1987), 267–292 | DOI
[4] Edigarov A. S., “Chislennyi raschet turbulentnogo techeniya kholodnogo tyazhelogo gaza v atmosfere”, ZhVM i MF, 31:9 (1991), 1369–1380 | MR
[5] Sini J.-F., Anquetin S., Mestayer P. G., “Pollutant dispersion and thermal effects in urban street canyons”, Atmospheric Environment, 30:15 (1995), 2659–2677 | DOI
[6] Perdikaris G. A., “Numerical simulation of the three-dimensional micro-scale dispersion of air-pollutants in regions with complex topography”, Heat and Mass Transfer, 37:6 (2001), 583–591 | DOI
[7] Blocken B., Stathopoulos T., Saathoft P., Wang X., “Numerical evaluation of pollutant dispersion in the built environment: comparisons between models and experiments”, Journal of wind engineering and industrial aerodynamics, 96:10–11 (2008), 1817–1831 | DOI
[8] Labovsky J., Jelemensky L., “CFD simulations of ammonia dispersion using “dynamic” boundary conditions”, Process Safety and Environmental Protection, 88:4 (2010), 243–252 | DOI
[9] Ivanov A. V., Razrabotka metodicheskikh osnov otsenki posledstvii khimicheskikh promyshlennykh avarii (na primere metallurgicheskogo kombinata), dissertatsiya kand. tekhn. nauk, MISiS, M., 1999, 283 pp.
[10] Mackay D., Matsugu R. S., “Evaporation rates of liquid hydrocarbon spills on land and water”, Canadian Journal of Chemical Engineering, 51:4 (1973), 434–439 | DOI
[11] Kawamura P. I., Mackay D., “The evaporation of volatile liquids”, Journal of Hazardous Materials, 15:3 (1987), 343–364 | DOI
[12] Aqua ammonia information manual, LaRoche Industries Inc., 1997, 64 pp.
[13] Fluent Inc. Fluent 6.1. User's Guide, Lebanon, 2003
[14] Pomerantsev V. V., Arefev K. M., Akhmedov D. B., Osnovy prakticheskoi teorii goreniya, Energoatomizdat, L., 1986, 312 pp.
[15] Patankar S., Chislennye metody resheniya zadach teploobmena i dinamiki zhidkosti, Energoatomizdat, M., 1984, 152 pp.
[16] Vorotilin V. P., Gorbulin V. D., “Matematicheskaya model protsessa ispareniya szhizhennogo gaza pri ego avariinom razlitii na otkrytykh prostranstvakh”, Khimicheskaya promyshlennost, 1992, no. 6, 42–47