Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2011_23_7_a5, author = {L. M. Skvortsov}, title = {Explicit adaptive {Runge--Kutta} methods}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {73--87}, publisher = {mathdoc}, volume = {23}, number = {7}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2011_23_7_a5/} }
L. M. Skvortsov. Explicit adaptive Runge--Kutta methods. Matematičeskoe modelirovanie, Tome 23 (2011) no. 7, pp. 73-87. http://geodesic.mathdoc.fr/item/MM_2011_23_7_a5/
[1] Fowler M. E., Warten R. M., “A numerical integration technique for ordinary differential equations with widely separated eigenvalues”, IBM J. Res. and Development, 11:5 (1967), 537–543 | DOI | MR | Zbl
[2] Lambert J. D., “Nonlinear methods for stiff systems of ordinary differential equations”, Lect. Notes in Math., 363, 1974, 75–88 | DOI | MR | Zbl
[3] Wambecq A., “Rational Runge-Kutta methods for solving systems of ordinary differential equations”, Computing, 20:4 (1978), 333–342 | DOI | MR | Zbl
[4] Bobkov V. V., “Novye yavnye A-ustoichivye metody chislennogo resheniya differentsialnykh uravnenii”, Differents. ur-niya, 14:12 (1978), 2249–2251 | MR | Zbl
[5] Zavorin A. N., “Primenenie nelineinykh metodov dlya rascheta perekhodnykh protsessov v elektricheskikh tsepyakh”, Izv. vuzov. Radioelektronika, 26:3 (1983), 35–41
[6] Ashour S. S., Hanna O. T., “Explicit exponential method for the integration of stiff ordinary differential equations”, J. of Guidance, Control and Dynamics, 14:6 (1991), 1234–1239 | DOI | MR | Zbl
[7] Wu X. Y., Xia J. L., “Two low accuracy methods for stiff systems”, Appl. Math. Comput., 123:2 (2001), 141–153 | DOI | MR | Zbl
[8] Skvortsov L. M., “Adaptivnye metody tsifrovogo modelirovaniya dinamicheskikh sistem”, Izv. RAN. Teoriya i sistemy upravleniya, 1995, no. 4, 180–190 | MR
[9] Skvortsov L. M., “Yavnye adaptivnye metody chislennogo resheniya zhestkikh sistem”, Matem. modelirovanie, 12:12 (2000), 97–107 | MR | Zbl
[10] Skvortsov L. M., “Yavnyi mnogoshagovyi metod chislennogo resheniya zhestkikh differentsialnykh uravnenii”, Zh. vychisl. matem. i matem. fiz., 47:6 (2007), 959–967 | MR
[11] Skvortsov L. M., “Prostye yavnye metody chislennogo resheniya zhestkikh obyknovennykh differentsialnykh uravnenii”, Vychisl. metody i programmirovanie, 9 (2008), 154–162 ; http://www.num-meth.srcc.msu.ru/
[12] Kozlov O. S., Skvortsov L. M., Khodakovskii V. V., Reshenie differentsialnykh i differentsialno-algebraicheskikh uravnenii v programmnom komplekse MVTU http://www.model.exponenta.ru/mvtu/20051121.html
[13] Khairer E., Vanner G., Reshenie obyknovennykh differentsialnykh uravnenii. Zhestkie i differentsialno-algebraicheskie zadachi, Mir, M., 1999, 685 pp.
[14] Ralston A., “Runge-Kutta methods with minimum error bounds”, Math. Comput., 16:80 (1962), 431–437 | DOI | MR | Zbl
[15] Alshina E. A., Zaks E. M., Kalitkin N. N., “Optimalnye parametry yavnykh skhem Runge-Kutty nevysokikh poryadkov”, Matem. modelirovanie, 18:2 (2006), 3–15 | MR | Zbl
[16] Skvortsov L. M., “Modelnye uravneniya dlya issledovaniya tochnosti metodov Runge-Kutty”, Matem. modelirovanie, 22:5 (2010), 146–160 | MR | Zbl
[17] Khairer E., Nërsett S., Vanner G., Reshenie obyknovennykh differentsialnykh uravnenii. Nezhestkie zadachi, Mir, M., 1990, 512 pp. | MR
[18] http://www.web.math.unifi.it/users/brugnano/ BiM/BiMD/index_BiMD.htm/
[19] Lebedev V. I., “Kak reshat yavnymi metodami zhestkie sistemy differentsialnykh uravnenii”, Vychislitelnye protsessy i sistemy, vyp. 8, Nauka, M., 1991, 237–291 | MR
[20] Verwer J. G., “Explicit Runge-Kutta methods for parabolic partial differential equations”, Appl. Numer. Math., 22:1–3 (1996), 359–379 | DOI | MR | Zbl