Simulations of adiabatic chemical reactions in condensed media
Matematičeskoe modelirovanie, Tome 23 (2011) no. 7, pp. 61-72.

Voir la notice de l'article provenant de la source Math-Net.Ru

Algorithms of simulation of adiabatic chemical reactions in condensed media have been developed. The time behavior of newly introduced collective coordinate of media has been studied for model reaction of electron excitation of single active particle. Theoretical justification of algorithms has been stated. The dependency of correlation functions of collective coordinate of media on temperature has been studied numerically. The dependency of reaction rate on temperature has been numerically calculated based on algorithms developed. The correspondence between calculated rate-temperature curve and simple formulas of chemical kinetics has been shown.
Mots-clés : simulations, adiabatic
Keywords: chemical reactions, condensed media, collective coordinate.
@article{MM_2011_23_7_a4,
     author = {K. S. Arakelov},
     title = {Simulations of adiabatic chemical reactions in condensed media},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {61--72},
     publisher = {mathdoc},
     volume = {23},
     number = {7},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2011_23_7_a4/}
}
TY  - JOUR
AU  - K. S. Arakelov
TI  - Simulations of adiabatic chemical reactions in condensed media
JO  - Matematičeskoe modelirovanie
PY  - 2011
SP  - 61
EP  - 72
VL  - 23
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2011_23_7_a4/
LA  - ru
ID  - MM_2011_23_7_a4
ER  - 
%0 Journal Article
%A K. S. Arakelov
%T Simulations of adiabatic chemical reactions in condensed media
%J Matematičeskoe modelirovanie
%D 2011
%P 61-72
%V 23
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2011_23_7_a4/
%G ru
%F MM_2011_23_7_a4
K. S. Arakelov. Simulations of adiabatic chemical reactions in condensed media. Matematičeskoe modelirovanie, Tome 23 (2011) no. 7, pp. 61-72. http://geodesic.mathdoc.fr/item/MM_2011_23_7_a4/

[1] W. H. Miller, Y. Zhao, M. Ceotto, S. Yang, “Quantum Instanton Approximation for Thermal Rate Constants of Chemical Reactions”, Journal of Chemical Physics, 119 (2003), 1329–1342 | DOI

[2] W. H. Miller, S. D. Schwartz, J. W. Tromp, “Quantum Mechanical Rate Constants for Bimolecular Reactions”, Journal of Chemical Physics, 79 (1983), 4889–4898 | DOI

[3] T. Yamamoto, W. H. Miller, “On the efficient path integral evaluation of thermal rate constants within the quantum instanton approximation”, Journal of Chemical Physics, 120 (2004), 3086–3099 | DOI

[4] M. Buchowiecki, J. Vanicek, “Direct evaluation of the temperature dependence of the rate constant based on the quantum instanton approximation”, Journal of Chemical Physics, 132 (2010), 194106 | DOI

[5] I. V. Aleksandrov, Z. K. Smedarchina, “Statisticheskaya teoriya vliyaniya kondensirovannoi sredy na skorost khimicheskikh reaktsii”, Khimicheskaya fizika, 3 (1982), 346–356

[6] L. D. Landau, E. M. Lifshits, Teoreticheskaya fizika, ch. I, v. V, Statisticheskaya fizika, Fizmatlit, 2006, 616 pp.

[7] S. Ya. Umanskii, Teoriya elementarnogo akta khimicheskogo prevrascheniya v gaze, Izd-vo MGU, 2000, 235 pp.

[8] K. S. Arakelov, “Modelirovanie kvantovoi dinamiki trekhchastichnykh sistem v kvaziklassicheskom priblizhenii metodom kollektivnogo povedeniya”, Matematicheskoe modelirovanie, 21:5 (2009), 83–91 | Zbl

[9] K. S. Arakelov, “Modelirovanie kvantovogo uprugogo rasseyaniya pri atomnykh stolknoveniyakh v kvaziklassicheskom priblizhenii s uchetom interferentsionnykh effektov”, Mikroelektronika, 38:5 (2009), 331–343

[10] Kh. A. Takha, Vvedenie v issledovanie operatsii, Vilyams, M., 2005, 901 pp.