The improved form of the conjugated gradients method
Matematičeskoe modelirovanie, Tome 23 (2011) no. 7, pp. 33-51 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The conjugated gradient method for systems of linear algebraic equations is investigated. The form of this method is constracted, which occured especially simple and stable under round-off errors. The criterium of iteration truncation is proposed based on prevailing of round-off errors. The numerical calculations were performed, illustrating peculiarities of the method convergency for good and ill posed problems.
Keywords: systems of linear algebraic equations, the conjugated gradients method, round-off errors, ill posed problems.
@article{MM_2011_23_7_a2,
     author = {N. N. Kalitkin and L. V. Kuzmina},
     title = {The improved form of the conjugated gradients method},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {33--51},
     year = {2011},
     volume = {23},
     number = {7},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2011_23_7_a2/}
}
TY  - JOUR
AU  - N. N. Kalitkin
AU  - L. V. Kuzmina
TI  - The improved form of the conjugated gradients method
JO  - Matematičeskoe modelirovanie
PY  - 2011
SP  - 33
EP  - 51
VL  - 23
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/MM_2011_23_7_a2/
LA  - ru
ID  - MM_2011_23_7_a2
ER  - 
%0 Journal Article
%A N. N. Kalitkin
%A L. V. Kuzmina
%T The improved form of the conjugated gradients method
%J Matematičeskoe modelirovanie
%D 2011
%P 33-51
%V 23
%N 7
%U http://geodesic.mathdoc.fr/item/MM_2011_23_7_a2/
%G ru
%F MM_2011_23_7_a2
N. N. Kalitkin; L. V. Kuzmina. The improved form of the conjugated gradients method. Matematičeskoe modelirovanie, Tome 23 (2011) no. 7, pp. 33-51. http://geodesic.mathdoc.fr/item/MM_2011_23_7_a2/

[1] Samarskii A. A., Nikolaev E. S., Metody resheniya setochnykh uravnenii, Nauka. Fizmatlit, M., 1978, 592 pp. | MR

[2] Faddeev D. K., Faddeeva V. N., Vychislitelnye metody lineinoi algebry, Lan, SPb., 2002

[3] Bakhvalov N. S., Zhidkov N. P., Kobelkov G. M., Chislennye metody, 1-e izd., Nauka, M., 1987 | MR | Zbl

[4] Samarskii A. A., Gulin A. V., Chislennye metody, Nauka, M., 1989, 430 pp. | MR

[5] Golub Dzh., Van Loun Charlz F., Matrichnye vychisleniya, Mir, M., 1999, 467 pp.; Golub Gene H., van Loan Charles F., Matrix Compoutations, 3-rd Edition, John Hopkins University Press, 1996, 384 pp.

[6] Lantsosh K., Prakticheskie metody prikladnogo analiza, GIFML, M., 1961, 524 pp.

[7] Kalitkin N. N., Yukhno L. F., Kuzmina L. V., “Kriterii obuslovlennosti sistem algebraicheskikh uravnenii”, DAN, 434:4 (2010), 464–467 | MR | Zbl

[8] Kalitkin N. N., Yukhno L. F., Kuzmina L. V., “Kolichestvennyi kriterii obuslovlennosti sistem lineinykh algebraicheskikh uravnenii”, Matematicheskoe modelirovanie, 23:2 (2011), 3–26 | MR | Zbl

[9] Alshina E. A., Boltnev A. A., Kacher O. A., “Gradientnye metody s uskorennoi skhodimostyu”, ZhVMiMF, 45:3 (2005), 374–382 | MR

[10] Alshina E. A., Boltnev A. A., Kacher O. A., “Empiricheskoe uluchshenie prosteishikh gradientnykh metodov”, Matematicheskoe modelirovanie, 17:6 (2005), 43–57 | MR

[11] Abramov A. A., “Ob odnom metode resheniya plokho obuslovlennykh sistem lineinykh algebraicheskikh uravnenii”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 31:4 (1991), 483–491 | MR

[12] Abramov A. A., Ulyanova V. I., Yukhno L. F., “O primenenii metoda Kreiga k resheniyu lineinykh uravnenii s netochno zadannymi iskhodnymi dannymi”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 42:12 (2002), 1763–1770 | MR | Zbl

[13] Yukhno L. F., “Modifikatsiya nekotorykh metodov tipa sopryazhennykh napravlenii dlya resheniya sistem lineinykh algebraicheskikh uravnenii”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 47:11 (2007), 1811–1818 | MR