The improved form of the conjugated gradients method
Matematičeskoe modelirovanie, Tome 23 (2011) no. 7, pp. 33-51.

Voir la notice de l'article provenant de la source Math-Net.Ru

The conjugated gradient method for systems of linear algebraic equations is investigated. The form of this method is constracted, which occured especially simple and stable under round-off errors. The criterium of iteration truncation is proposed based on prevailing of round-off errors. The numerical calculations were performed, illustrating peculiarities of the method convergency for good and ill posed problems.
Keywords: systems of linear algebraic equations, the conjugated gradients method, round-off errors, ill posed problems.
@article{MM_2011_23_7_a2,
     author = {N. N. Kalitkin and L. V. Kuzmina},
     title = {The improved form of the conjugated gradients method},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {33--51},
     publisher = {mathdoc},
     volume = {23},
     number = {7},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2011_23_7_a2/}
}
TY  - JOUR
AU  - N. N. Kalitkin
AU  - L. V. Kuzmina
TI  - The improved form of the conjugated gradients method
JO  - Matematičeskoe modelirovanie
PY  - 2011
SP  - 33
EP  - 51
VL  - 23
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2011_23_7_a2/
LA  - ru
ID  - MM_2011_23_7_a2
ER  - 
%0 Journal Article
%A N. N. Kalitkin
%A L. V. Kuzmina
%T The improved form of the conjugated gradients method
%J Matematičeskoe modelirovanie
%D 2011
%P 33-51
%V 23
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2011_23_7_a2/
%G ru
%F MM_2011_23_7_a2
N. N. Kalitkin; L. V. Kuzmina. The improved form of the conjugated gradients method. Matematičeskoe modelirovanie, Tome 23 (2011) no. 7, pp. 33-51. http://geodesic.mathdoc.fr/item/MM_2011_23_7_a2/

[1] Samarskii A. A., Nikolaev E. S., Metody resheniya setochnykh uravnenii, Nauka. Fizmatlit, M., 1978, 592 pp. | MR

[2] Faddeev D. K., Faddeeva V. N., Vychislitelnye metody lineinoi algebry, Lan, SPb., 2002

[3] Bakhvalov N. S., Zhidkov N. P., Kobelkov G. M., Chislennye metody, 1-e izd., Nauka, M., 1987 | MR | Zbl

[4] Samarskii A. A., Gulin A. V., Chislennye metody, Nauka, M., 1989, 430 pp. | MR

[5] Golub Dzh., Van Loun Charlz F., Matrichnye vychisleniya, Mir, M., 1999, 467 pp.; Golub Gene H., van Loan Charles F., Matrix Compoutations, 3-rd Edition, John Hopkins University Press, 1996, 384 pp.

[6] Lantsosh K., Prakticheskie metody prikladnogo analiza, GIFML, M., 1961, 524 pp.

[7] Kalitkin N. N., Yukhno L. F., Kuzmina L. V., “Kriterii obuslovlennosti sistem algebraicheskikh uravnenii”, DAN, 434:4 (2010), 464–467 | MR | Zbl

[8] Kalitkin N. N., Yukhno L. F., Kuzmina L. V., “Kolichestvennyi kriterii obuslovlennosti sistem lineinykh algebraicheskikh uravnenii”, Matematicheskoe modelirovanie, 23:2 (2011), 3–26 | MR | Zbl

[9] Alshina E. A., Boltnev A. A., Kacher O. A., “Gradientnye metody s uskorennoi skhodimostyu”, ZhVMiMF, 45:3 (2005), 374–382 | MR

[10] Alshina E. A., Boltnev A. A., Kacher O. A., “Empiricheskoe uluchshenie prosteishikh gradientnykh metodov”, Matematicheskoe modelirovanie, 17:6 (2005), 43–57 | MR

[11] Abramov A. A., “Ob odnom metode resheniya plokho obuslovlennykh sistem lineinykh algebraicheskikh uravnenii”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 31:4 (1991), 483–491 | MR

[12] Abramov A. A., Ulyanova V. I., Yukhno L. F., “O primenenii metoda Kreiga k resheniyu lineinykh uravnenii s netochno zadannymi iskhodnymi dannymi”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 42:12 (2002), 1763–1770 | MR | Zbl

[13] Yukhno L. F., “Modifikatsiya nekotorykh metodov tipa sopryazhennykh napravlenii dlya resheniya sistem lineinykh algebraicheskikh uravnenii”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 47:11 (2007), 1811–1818 | MR