Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2011_23_7_a0, author = {D. Y. Adamian and M. Kh. Strelets and A. K. Travin}, title = {An efficient method of synthetic turbulence generation at {LES} inflow in zonal {RANS--LES} approaches to computation of turbulent flows}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {3--19}, publisher = {mathdoc}, volume = {23}, number = {7}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2011_23_7_a0/} }
TY - JOUR AU - D. Y. Adamian AU - M. Kh. Strelets AU - A. K. Travin TI - An efficient method of synthetic turbulence generation at LES inflow in zonal RANS--LES approaches to computation of turbulent flows JO - Matematičeskoe modelirovanie PY - 2011 SP - 3 EP - 19 VL - 23 IS - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2011_23_7_a0/ LA - ru ID - MM_2011_23_7_a0 ER -
%0 Journal Article %A D. Y. Adamian %A M. Kh. Strelets %A A. K. Travin %T An efficient method of synthetic turbulence generation at LES inflow in zonal RANS--LES approaches to computation of turbulent flows %J Matematičeskoe modelirovanie %D 2011 %P 3-19 %V 23 %N 7 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2011_23_7_a0/ %G ru %F MM_2011_23_7_a0
D. Y. Adamian; M. Kh. Strelets; A. K. Travin. An efficient method of synthetic turbulence generation at LES inflow in zonal RANS--LES approaches to computation of turbulent flows. Matematičeskoe modelirovanie, Tome 23 (2011) no. 7, pp. 3-19. http://geodesic.mathdoc.fr/item/MM_2011_23_7_a0/
[1] Frohlich J., von Terzi D., “Hybrid LES/RANS methods for the simulation of turbulent flows”, Progress in Aerospace Sciences, 44 (2008), 349–377 | DOI
[2] Schluter J., Moin P., Pitsch H., “Large-Eddy Simulation Inflow Conditions for Coupling with Reynolds-Averaged Flow Solvers”, AIAA Journal, 42:3 (2004), 478–484 | DOI
[3] Lund T. S., Wu X., Squires K. D., “Generation of turbulent inflow data for spatially-developing boundary layer simulations”, Journal of Computational Physics, 140:2 (1998), 233–258 | DOI | MR | Zbl
[4] Spalart P. R., Strelets M., Travin A., “Direct numerical simulation of large-eddy-break-up devices in a boundary layer”, International Journal of Heat and Fluid Flow, 27:5 (2006), 902–910 | DOI
[5] de Prisco G., Piomelli U., Keating A., “Improved turbulence generation techniques for hybrid RANS/LES calculations”, Journal of Turbulence, 9:5 (2008), 1–20 | MR
[6] Jarrin N., Benhamadouche S., Laurence D., Prosser R., “A synthetic-eddy-method for generating inflow conditions for large-eddy simulations”, International Journal of Heat and Fluid Flow, 27:4 (2006), 585–593 | DOI
[7] Davidson L., “Hybrid LES-RANS: inlet boundary conditions for flows including recirculation”, 5th Symposium on Turbulence and Shear Flow, v. 2, Munich, 2007, 689–694
[8] Batten P., Goldberg U., Chakravarthy S., “Interfacing statistical turbulence closures with large-eddy simulation”, AIAA Journal, 42:3 (2004), 485–492 | DOI
[9] di Mare L., Klein M., Jones W. P., Janicka J., “Synthetic turbulence inflow conditions for large-eddy simulation”, Physics of Fluids, 18:2 (2006) | MR
[10] Bechara W., Bailly C., Lafon P., Candel S. M., “Stochastic approach to noise modeling for free turbulent flows”, AIAA journal, 32:3 (1994), 455–463 | DOI | Zbl
[11] Pamies M., Weiss P.-E., Garnier E., Deck S., Sagaut P., “Generation of synthetic turbulent inflow data for large eddy simulation of spatially evolving wall-bounded flows”, Physics of Fluids, 21:4 (2009) | DOI | Zbl
[12] Khintse I. O., Turbulentnost, Fizmatgiz, M., 1963
[13] Menter F. R., “Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications”, AIAA Journal, 32 (1994), 1598–1605 | DOI
[14] Travin A., Shur M., Strelets M., Spalart P. R., “Physical and numerical upgrades in the detached-eddy simulation of complex turbulent flows”, Advances in LES of Complex Flows, Springer Netherlands, eds. Friedrich R., Rodi W., 2002, 239–254 | Zbl
[15] Piomelli U., Zang T., Speziale C., Hussaini M., “On the large-eddy simulation of transitional wallbounded flows”, Physics of Fluids A: Fluid Dynamics, 2 (1990), 257–265 | DOI
[16] Shur M., Spalart P. R., Strelets M., Travin A., “A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities”, International Journal of Heat and Fluid Flow, 29:6 (2008), 1638–1649 | DOI
[17] Garbaruk A., Magidov D., Shur M., Strelets M., Travin A., “Contribution by SPTU: Support of Partners' Efforts Directed to Implementation of DES Technology”, FLOMANIA - A European Initiative on Flow Physics Modelling, eds. Haase W., Aupoix B., Bunge U., Schwamborn D., Springer, Berlin, 2006, 101–108 | DOI
[18] Rogers S. E., Kwak D., “An upwind differencing scheme for the incompressible Navier-Stokes equations”, Applied Numerical Mathematics, 8:1 (1991), 43–64 | DOI | MR | Zbl
[19] Schoenherr K. E., “Resistances of flat surfaces moving through a fluid”, SNAME Transaction, 40 (1932), 279–313
[20] Greenblatt D., Paschal K. B., Yao C. S., Harris J., “A Separation Control CFD Validation Test Case. II: Zero Efflux Oscillatory Blowing”, AIAA Paper, 2005, 2005-0485
[21] http://www.cfdval2004.larc.nasa.gov/case3.html
[22] Rumsey C. L., Gatski T., Sellers W. III, Vasta V., Viken S., “Summary of the 2004 Computational Fluid Dynamics Validation Workshop on Synthetic Jets”, AIAA J., 44:2 (2006), 194–207 | DOI
[23] Spalart P. R., Deck S., Shur M., Squires K. D., Strelets M., Travin A., “A new version of detachededdy simulation, resistant to ambiguous grid densities”, Theoretical and Computational Fluid Dynamics, 20:3 (2006), 181–195 | DOI | Zbl