Simulation of multilane vehicle traffic flows based on the cellular automata theory
Matematičeskoe modelirovanie, Tome 23 (2011) no. 6, pp. 133-146.

Voir la notice de l'article provenant de la source Math-Net.Ru

A two-dimensional microscopic model of multilane vehicle traffic flows is proposed in the work. Performed test predictions verified its adequacy. The model was used to study numerically traffic capacity of a crossroad at different traffic lights modes as well as to compare traffic capacities of roads depending on the presence and the number of entries – exits.
Keywords: microscopic and macroscopic traffic flow models, cellular automata, multilane road, traffic capacity.
@article{MM_2011_23_6_a9,
     author = {M. A. Trapeznikova and I. R. Furmanov and N. G. Churbanova and R. Lipp},
     title = {Simulation of multilane vehicle traffic flows based on the cellular automata theory},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {133--146},
     publisher = {mathdoc},
     volume = {23},
     number = {6},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2011_23_6_a9/}
}
TY  - JOUR
AU  - M. A. Trapeznikova
AU  - I. R. Furmanov
AU  - N. G. Churbanova
AU  - R. Lipp
TI  - Simulation of multilane vehicle traffic flows based on the cellular automata theory
JO  - Matematičeskoe modelirovanie
PY  - 2011
SP  - 133
EP  - 146
VL  - 23
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2011_23_6_a9/
LA  - ru
ID  - MM_2011_23_6_a9
ER  - 
%0 Journal Article
%A M. A. Trapeznikova
%A I. R. Furmanov
%A N. G. Churbanova
%A R. Lipp
%T Simulation of multilane vehicle traffic flows based on the cellular automata theory
%J Matematičeskoe modelirovanie
%D 2011
%P 133-146
%V 23
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2011_23_6_a9/
%G ru
%F MM_2011_23_6_a9
M. A. Trapeznikova; I. R. Furmanov; N. G. Churbanova; R. Lipp. Simulation of multilane vehicle traffic flows based on the cellular automata theory. Matematičeskoe modelirovanie, Tome 23 (2011) no. 6, pp. 133-146. http://geodesic.mathdoc.fr/item/MM_2011_23_6_a9/

[1] Chowdhury D., Santen L., Schadschneider A., “Statistical physics of vehicular traffic and some related systems”, Phys. Rep., 329 (2000), 199–329 | DOI | MR

[2] Klar A., Wegener R., “A hierarchy of models for multilane vehicular traffic. I: Modeling”, SIAM J. Appl. Math., 59 (1999), 983–1001 | DOI | MR | Zbl

[3] Kerner B. S., “Complexity of synchronized flow and related problems for basic assumptions of traffic flow theories”, Networks and Spatial Economics, 1:1–2 (2001), 35–76 | DOI | MR

[4] Gasnikov A. V., Klenov S. L., Nurminskii E. A., Kholodov Ya. A., Shamrai N. B., Vvedenie v matematicheskoe modelirovanie transportnykh potokov, ucheb. posobie; Бланк М. Л., Гасникова Е. В., Замятин А. А., Малышев В. А., Колесников А. В., Райгородский А. М., ред. А. В. Гасников, МФТИ, М., 2010, 360 с.

[5] Lighthill M. H., Witham G. B., “On kinematic waves: a theory of traffic flow on long crowded roads”, Proc. Royal. Soc. Ser. A, 229:1178 (1955), 317–345 | DOI | MR | Zbl

[6] Payne H. J., “Models of freeway traffic and control”, Mathematical Models of Public Systems, v. 1, ed. G. A. Beke, Simulation Council, La Jolla, CA, 1971, 51–61

[7] Gazis D. C., Herman R., Potts R. B., “Car Following Theory of Steady State Traffic Flow”, Operations Research, 7:4 (1959), 499–505 | DOI | MR

[8] Progogine I. R., Andrews F. C., “A Boltzmann like approach for traffic flow”, Oper. Res., 8:789 (1960) | MR

[9] Prigogine I. R., Herman R., Kinetic Theory of Vehicular Traffic, Elsevier, Amsterdam, 1971 | Zbl

[10] Bando M., Hasebe K., Nakayama A., Shibata A., Sugiyama Y., “Phenomenological Study of Dynamical Model of Traffic Flow”, J. Physique I France, 5:1389 (1995), 1389–1399 | DOI

[11] Nagel K., Schreckenberg M., “A Cellular automation model for freeway traffic”, J. Phys. I France, 2:2221 (1992)

[12] Lubashevsky I., Wagner P., Mahnke R., Towards the fundamentals of the car following theory, 2003, arXiv: cond-mat/0212382v2

[13] Buslaev A. P., Novikov A. V., Prikhodko V. M., Tatashev A. G., Yashina M. V., Veroyatnostnye i imitatsionnye podkhody k optimizatsii avtodorozhnogo dvizheniya, Mir, M., 2003

[14] Bugaev A. S., Buslaev A. P., Tatashev A. G., “O modelirovanii segregatsii dvukhpolosnogo potoka chastits”, Matematicheskoe modelirovanie, 20:9 (2008), 111–119 | MR | Zbl

[15] Kiselev A. B., Kokoreva A. V., Nikitin V. F., Smirnov N. N., “Matematicheskoe modelirovanie dvizheniya avtotransportnykh potokov metodami mekhaniki sploshnoi sredy. Issledovanie vliyaniya iskusstvennykh dorozhnykh nerovnostei na propusknuyu sposobnost uchastka dorogi”, Sovremennye problemy matematiki i mekhaniki, v. I, Prikladnye issledovaniya, eds. V. V. Aleksandrov, V. B. Kudryavtsev, Izd-vo MGU, M., 2009, 311–322

[16] Kholodov Ya. A., Kholodov A. S., Gasnikov A. V., Morozov I. I., Tarasov V. N., “Modelirovanie transportnykh potokov –aktualnye problemy i puti ikh resheniya”, Trudy MFTI, 2:4(8), spets. vypusk pod red. akad. V. V. Kozlova (2010)

[17] Karamzin Yu. N., Trapeznikova M. A., Chetverushkin B. N., Churbanova N. G., “Dvumernaya model avtomobilnykh potokov”, Matematicheskoe modelirovanie, 18:6 (2006), 85–95 | MR | Zbl

[18] Sukhinova A. B., Trapeznikova M. A., Chetverushkin B. N., Churbanova N. G., “Dvumernaya makroskopicheskaya model transportnykh potokov”, Matematicheskoe modelirovanie, 21:2 (2009), 118–126 | Zbl

[19] Chetverushkin B. N., Kineticheskie skhemy i kvazigazodinamicheskaya sistema uravnenii, MAKS Press, M., 2004 | Zbl