Spectral treatment of the Navier--Stokes nonlinear terms in the presence of coordinate singularities
Matematičeskoe modelirovanie, Tome 23 (2011) no. 6, pp. 111-122.

Voir la notice de l'article provenant de la source Math-Net.Ru

Mathematical physics equations in polar and cylindrical coordinates comprise coefficients that are singular at $r=0$. Singularity along polar axis may diminish accuracy and computational efficiency of classical spectral methods, particularly for nonlinear problems. We present fast and accurate spectral method which avoids the singularity problem and is suitable for calculation of quadratic nonlinearities of differential equations in physics. Algorithm is explained by giving an example of the nonlinear terms treatment in three-dimensional incompressible Navier–Stokes equations describing turbulent flows in a periodic circular pipe. Our approach partly utilizes the special behaviour of analytic functions near the singularity and makes use of Chebyshev parity-restricted polynomial basis for radial expansions. New algorithm may have wider applicability including problems with cylindrical symmetry in situations when computational domain contains coordinate singularities.
Keywords: spectral methods, coordinate singularities, Navier–Stokes equations, turbulent flow simulation.
@article{MM_2011_23_6_a7,
     author = {V. G. Priymak},
     title = {Spectral treatment of the {Navier--Stokes} nonlinear terms in the presence of coordinate singularities},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {111--122},
     publisher = {mathdoc},
     volume = {23},
     number = {6},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2011_23_6_a7/}
}
TY  - JOUR
AU  - V. G. Priymak
TI  - Spectral treatment of the Navier--Stokes nonlinear terms in the presence of coordinate singularities
JO  - Matematičeskoe modelirovanie
PY  - 2011
SP  - 111
EP  - 122
VL  - 23
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2011_23_6_a7/
LA  - ru
ID  - MM_2011_23_6_a7
ER  - 
%0 Journal Article
%A V. G. Priymak
%T Spectral treatment of the Navier--Stokes nonlinear terms in the presence of coordinate singularities
%J Matematičeskoe modelirovanie
%D 2011
%P 111-122
%V 23
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2011_23_6_a7/
%G ru
%F MM_2011_23_6_a7
V. G. Priymak. Spectral treatment of the Navier--Stokes nonlinear terms in the presence of coordinate singularities. Matematičeskoe modelirovanie, Tome 23 (2011) no. 6, pp. 111-122. http://geodesic.mathdoc.fr/item/MM_2011_23_6_a7/

[1] Garg V. K., Rouleau W. T., “Linear spatial stability of pipe Poiseuille flow”, J. Fluid Mech., 54 (1972), 113–127 | DOI | Zbl

[2] Noll R. J., “Zernike polynomials and atmospheric turbulence”, J. Opt. Soc. Am., 66 (1976), 207–211 | DOI

[3] Matsushima T., Marcus P. S., “A spectral method for polar coordinates”, J. Comput. Phys., 120 (1995), 365–374 | DOI | MR | Zbl

[4] Verkley W. T. M., “A spectral model for two-dimensional incompressible fluid flow in a circular basin. I: Mathematical foundation”, J. Comput. Phys., 136 (1997), 100–114 | DOI | MR | Zbl

[5] Livermore P. W., Jones C. A., Worland S. J., “Spectral radial basis functions for full sphere computations”, J. Comput. Phys., 227 (2007), 1209–1224 | DOI | MR | Zbl

[6] Sakai T., Redekopp L. G., “An application of one-sided Jacobi polynomials for spectral modeling of vector fields in polar coordinates”, J. Comput. Phys., 228 (2009), 7069–7085 | DOI | Zbl

[7] Lyuk Yu., Spetsialnye matematicheskie funktsii i ikh approksimatsii, Mir, M., 1980, 608 pp.

[8] Leonard A., Wray A., “A new numerical method for the simulation of three-dimensional flow in a pipe”, Proceedings 8th Internat. Conf. Numer. Methods in Fluid Dynamics, Lecture Notes in Physics, 170, Springer, 1982, 335–342 | DOI

[9] Ishioka K., “Spectral model for shallow-water equation on a disk. I: Basic formulation”, J. Jpn. Soc. Fluid Mech., 22 (2003), 345–358

[10] Auteri F., Quartapelle L., “Spectral elliptic solvers in a finite cylinder”, Commun. Comput. Phys., 5 (2009), 426–441 | MR

[11] Orszag S. A., Patera A. T., “Secondary instability of wall-bounded shear flows”, J. Fluid Mech., 128 (1983), 347–385 | DOI | Zbl

[12] Priymak V. G., Miyazaki T., “Accurate Navier-Stokes investigation of transitional and turbulent flows in a circular pipe”, J. Comput. Phys., 142 (1998), 370–411 | DOI | MR | Zbl

[13] Lopez J. M., Marques F., Shen J., “An efficient spectral-projection method for the Navier-Stokes equations in cylindrical geometries. II: Threedimensional cases”, J. Comput. Phys., 176 (2002), 384–401 | DOI | MR | Zbl

[14] Priimak V. G., “Zadacha na sobstvennye znacheniya dlya operatora Nove-Stoksa v tsilindricheskikh koordinatakh”, Matematicheskoe modelirovanie, 21:10 (2009), 29–46

[15] Bouaoudia S., Marcus P. S., “Fast and Accurate Spectral Treatment of Coordinate Singularities”, J. Comput. Phys., 96 (1991), 217–223 | DOI | MR | Zbl

[16] Priimak V. G., “Volny i prostranstvenno lokalizovannye struktury v turbulentnykh techeniyakh vyazkoi zhidkosti. Rezultaty raschetov”, Matematicheskoe modelirovanie, 22:2 (2010), 3–28 | MR