Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2011_23_6_a7, author = {V. G. Priymak}, title = {Spectral treatment of the {Navier--Stokes} nonlinear terms in the presence of coordinate singularities}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {111--122}, publisher = {mathdoc}, volume = {23}, number = {6}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2011_23_6_a7/} }
TY - JOUR AU - V. G. Priymak TI - Spectral treatment of the Navier--Stokes nonlinear terms in the presence of coordinate singularities JO - Matematičeskoe modelirovanie PY - 2011 SP - 111 EP - 122 VL - 23 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2011_23_6_a7/ LA - ru ID - MM_2011_23_6_a7 ER -
V. G. Priymak. Spectral treatment of the Navier--Stokes nonlinear terms in the presence of coordinate singularities. Matematičeskoe modelirovanie, Tome 23 (2011) no. 6, pp. 111-122. http://geodesic.mathdoc.fr/item/MM_2011_23_6_a7/
[1] Garg V. K., Rouleau W. T., “Linear spatial stability of pipe Poiseuille flow”, J. Fluid Mech., 54 (1972), 113–127 | DOI | Zbl
[2] Noll R. J., “Zernike polynomials and atmospheric turbulence”, J. Opt. Soc. Am., 66 (1976), 207–211 | DOI
[3] Matsushima T., Marcus P. S., “A spectral method for polar coordinates”, J. Comput. Phys., 120 (1995), 365–374 | DOI | MR | Zbl
[4] Verkley W. T. M., “A spectral model for two-dimensional incompressible fluid flow in a circular basin. I: Mathematical foundation”, J. Comput. Phys., 136 (1997), 100–114 | DOI | MR | Zbl
[5] Livermore P. W., Jones C. A., Worland S. J., “Spectral radial basis functions for full sphere computations”, J. Comput. Phys., 227 (2007), 1209–1224 | DOI | MR | Zbl
[6] Sakai T., Redekopp L. G., “An application of one-sided Jacobi polynomials for spectral modeling of vector fields in polar coordinates”, J. Comput. Phys., 228 (2009), 7069–7085 | DOI | Zbl
[7] Lyuk Yu., Spetsialnye matematicheskie funktsii i ikh approksimatsii, Mir, M., 1980, 608 pp.
[8] Leonard A., Wray A., “A new numerical method for the simulation of three-dimensional flow in a pipe”, Proceedings 8th Internat. Conf. Numer. Methods in Fluid Dynamics, Lecture Notes in Physics, 170, Springer, 1982, 335–342 | DOI
[9] Ishioka K., “Spectral model for shallow-water equation on a disk. I: Basic formulation”, J. Jpn. Soc. Fluid Mech., 22 (2003), 345–358
[10] Auteri F., Quartapelle L., “Spectral elliptic solvers in a finite cylinder”, Commun. Comput. Phys., 5 (2009), 426–441 | MR
[11] Orszag S. A., Patera A. T., “Secondary instability of wall-bounded shear flows”, J. Fluid Mech., 128 (1983), 347–385 | DOI | Zbl
[12] Priymak V. G., Miyazaki T., “Accurate Navier-Stokes investigation of transitional and turbulent flows in a circular pipe”, J. Comput. Phys., 142 (1998), 370–411 | DOI | MR | Zbl
[13] Lopez J. M., Marques F., Shen J., “An efficient spectral-projection method for the Navier-Stokes equations in cylindrical geometries. II: Threedimensional cases”, J. Comput. Phys., 176 (2002), 384–401 | DOI | MR | Zbl
[14] Priimak V. G., “Zadacha na sobstvennye znacheniya dlya operatora Nove-Stoksa v tsilindricheskikh koordinatakh”, Matematicheskoe modelirovanie, 21:10 (2009), 29–46
[15] Bouaoudia S., Marcus P. S., “Fast and Accurate Spectral Treatment of Coordinate Singularities”, J. Comput. Phys., 96 (1991), 217–223 | DOI | MR | Zbl
[16] Priimak V. G., “Volny i prostranstvenno lokalizovannye struktury v turbulentnykh techeniyakh vyazkoi zhidkosti. Rezultaty raschetov”, Matematicheskoe modelirovanie, 22:2 (2010), 3–28 | MR