The monotonic bicompact schemes for a linear transfer equation
Matematičeskoe modelirovanie, Tome 23 (2011) no. 6, pp. 98-110.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that previously proposed by the authors bicompact difference scheme for a linear transport equation, which has the fourth-order approximation in spatial coordinate on a two-point stencil and the first order approximation in time, is monotonic. This implicit scheme is absolutely stable and can be solved by explicit formulas of the running calculation method. On the basis of this scheme the monotone nonlinear homogeneous difference scheme of high (third for smooth solutions) order accuracy in time is constructed. Calculations of the test problems with discontinuous solutions showed a significant advantage in the accuracy of the proposed scheme over known nonoscillatory schemes of high-order approximation.
Mots-clés : transport equation
Keywords: bicompact difference schemes, monotonicity.
@article{MM_2011_23_6_a6,
     author = {B. V. Rogov and M. N. Mikhailovskaya},
     title = {The monotonic bicompact schemes for a linear transfer equation},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {98--110},
     publisher = {mathdoc},
     volume = {23},
     number = {6},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2011_23_6_a6/}
}
TY  - JOUR
AU  - B. V. Rogov
AU  - M. N. Mikhailovskaya
TI  - The monotonic bicompact schemes for a linear transfer equation
JO  - Matematičeskoe modelirovanie
PY  - 2011
SP  - 98
EP  - 110
VL  - 23
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2011_23_6_a6/
LA  - ru
ID  - MM_2011_23_6_a6
ER  - 
%0 Journal Article
%A B. V. Rogov
%A M. N. Mikhailovskaya
%T The monotonic bicompact schemes for a linear transfer equation
%J Matematičeskoe modelirovanie
%D 2011
%P 98-110
%V 23
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2011_23_6_a6/
%G ru
%F MM_2011_23_6_a6
B. V. Rogov; M. N. Mikhailovskaya. The monotonic bicompact schemes for a linear transfer equation. Matematičeskoe modelirovanie, Tome 23 (2011) no. 6, pp. 98-110. http://geodesic.mathdoc.fr/item/MM_2011_23_6_a6/

[1] Tikhonov A. N., Samarskii A. A., Uravneniya matematicheskoi fiziki, Nauka, M., 1972, 736 pp. | MR

[2] Sushkevich T. A., Matematicheskie modeli perenosa izlucheniya, BINOM. Laboratoriya znanii, M., 2005, 661 pp.

[3] Kuznetsov V. S., Nikolaeva O. V., Bass L. P. i dr., “Modelirovanie rasprostraneniya ultrakorotkogo impulsa sveta cherez silno rasseivayuschuyu sredu”, Matematicheskoe modelirovanie, 21:4 (2009), 3–14 | Zbl

[4] Aristova E. N., Goldin V. Ya., “Ekonomichnyi raschet mnogogruppovogo uravneniya perenosa neitronov dlya perescheta usrednennykh po spektru sechenii”, Matematicheskoe modelirovanie, 20:11 (2008), 41–54 | Zbl

[5] Galanin M. P., “Chislennoe reshenie uravneniya perenosa”, Buduschee prikladnoi matematiki, Lektsii dlya molodykh issledovatelei, ed. G. G. Malinetskii, Editorial URSS, M., 2005, 78–116

[6] Tishkin V. F., Favorskii A. P., “Metody chislennogo resheniya uravnenii gazovoi dinamiki v peremennykh Eilera. Ot skhemy Godunova k skhemam vysokogo razresheniya”, Entsiklopediya nizkotemperaturnoi plazmy, ch. 2, v. VII-1, Yanus-K, M., 2008, 91–103

[7] Kholodov A. S., “Chislennye metody resheniya uravnenii i sistem giperbolicheskogo tipa”, Entsiklopediya nizkotemperaturnoi plazmy, ch. 2, v. VII-1, Yanus-K, M., 2008, 141–174

[8] Godunov S. K., “Raznostnyi metod chislennogo rascheta razryvnykh reshenii uravnenii gidrodinamiki”, Matem. sb., 47(89):3 (1959), 271–306 | MR | Zbl

[9] Kholodov A. S., Kholodov Ya. A., “O kriteriyakh monotonnosti raznostnykh skhem dlya uravnenii giperbolicheskogo tipa”, ZhVMiMF, 46:9 (2006), 1638–1667 | MR

[10] Grudnitskii V. T., Prokhorchuk Yu. A., “Odin priem postroeniya raznostnykh skhem s proizvolnym poryadkom approksimatsii dlya differentsialnykh uravnenii v chastnykh proizvodnykh”, Dokl. AN SSSR, 224:6 (1977), 1249–1252

[11] Rogov B. V., Mikhailovskaya M. N., “Bikompaktnye skhemy chetvertogo poryadka approksimatsii dlya giperbolicheskikh uravnenii”, Dokl. RAN, 430:4 (2010), 470–474 | MR | Zbl

[12] Ladonkina M. E., Neklyudova O. A., Tishkin V. F., Chevanin V. S., “Ob odnom variante suschestvenno neostsilliruyuschikh raznostnykh skhem vysokogo poryadka tochnosti dlya sistem zakonov sokhraneniya”, Matematicheskoe modelirovanie, 21:11 (2009), 19–32 | MR | Zbl

[13] Shu C.-W., Essentially Non-Oscillatory and Weighted Essentially Non-Oscillatory Schemes for Hyperbolic Conservation Laws, ICASE Report No 97-65, 1997 | MR

[14] Kalitkin N. N., Chislennye metody, Nauka, M., 1978, 512 pp. | MR

[15] Khairer E., Vanner G., Reshenie obyknovennykh differentsialnykh uravnenii. Zhestkie i differentsialno-algebraicheskie zadachi, Mir, M., 1999, 685 pp.

[16] Wornom S. F., “Application of two-point implicit central-difference methods to hyperbolic system”, Computers and Fluids, 20:3 (1991), 321–331 | DOI | MR | Zbl

[17] Kalitkin N. N., Kozlitin I. A., “Sravnenie svoistv skhem beguschego scheta dlya uravneniya perenosa”, Matematicheskoe modelirovanie, 18:4 (2006), 35–42 | Zbl

[18] Petrov I. B., Kholodov A. S., “O regulyarizatsii razryvnykh chislennykh reshenii uravnenii giperbolicheskogo tipa”, ZhVMiMF, 24:8 (1984), 1172–1188 | MR | Zbl

[19] Tolstykh A. I., Kompaktnye raznostnye skhemy i ikh primenenie v zadachakh aerogidrodinamiki, Nauka, M., 1990, 230 pp. | MR