Mathematical simulation of turbulent separated transonic flows about the bodies of revolution
Matematičeskoe modelirovanie, Tome 23 (2011) no. 5, pp. 71-80.

Voir la notice de l'article provenant de la source Math-Net.Ru

The properties of the turbulent separated flows around boat-tailed objects, especially in transonic regimes, are very complex and understood to date not very well. With variation of free-stream Mach number the flow structure: the size and location of separation areas, internal supersonic regions, the position and intensity of internal shocks – varies significantly. These flow properties determine the complexity of the numerical modeling problem and high demands on the algorithms used. The paper presents a comparison of numerical results obtained on the basis of different mathematical models with experimental data. The investigation of fundamental properties of transonic flow transformation are presented also.
Keywords: transonic flow, flow separation, the shock wave-boundary layer interaction, turbulence model.
@article{MM_2011_23_5_a4,
     author = {I. Yu. Kudryashov and A. E. Lutsky},
     title = {Mathematical simulation of turbulent separated transonic flows about the bodies of revolution},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {71--80},
     publisher = {mathdoc},
     volume = {23},
     number = {5},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2011_23_5_a4/}
}
TY  - JOUR
AU  - I. Yu. Kudryashov
AU  - A. E. Lutsky
TI  - Mathematical simulation of turbulent separated transonic flows about the bodies of revolution
JO  - Matematičeskoe modelirovanie
PY  - 2011
SP  - 71
EP  - 80
VL  - 23
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2011_23_5_a4/
LA  - ru
ID  - MM_2011_23_5_a4
ER  - 
%0 Journal Article
%A I. Yu. Kudryashov
%A A. E. Lutsky
%T Mathematical simulation of turbulent separated transonic flows about the bodies of revolution
%J Matematičeskoe modelirovanie
%D 2011
%P 71-80
%V 23
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2011_23_5_a4/
%G ru
%F MM_2011_23_5_a4
I. Yu. Kudryashov; A. E. Lutsky. Mathematical simulation of turbulent separated transonic flows about the bodies of revolution. Matematičeskoe modelirovanie, Tome 23 (2011) no. 5, pp. 71-80. http://geodesic.mathdoc.fr/item/MM_2011_23_5_a4/

[1] Dankov B. N., Kosenko A. P., Kulikov V. N., Otmennikov V. N., “Osobennosti transzvukovogo obtekaniya konusotsilindricheskogo tela pri bolshom ugle izloma obrazuyuschei na perednei uglovoi kromke”, Izv. RAN. MZhG, 2006, no. 2, 46–60

[2] Dankov B. N., Kosenko A. P., Kulikov V. N., Otmennikov V. N., “Osobennosti transzvukovogo obtekaniya konusotsilindricheskogo tela pri malom ugle izloma obrazuyuschei na perednei uglovoi kromke”, Izv. RAN. MZhG, 2006, no. 3, 140–154

[3] Dankov B. N., Kosenko A. P., Kulikov V. N., Otmennikov V. N., “Volnovye vozmuscheniya v transzvukovykh otryvnykh techeniyakh”, Izv. RAN. MZhG, 2006, no. 6, 153–165

[4] Dankov B. N., Kosenko A. P., Kulikov V. N., Otmennikov V. N., “Osobennosti transzvukovogo techeniya za zadnei uglovoi kromkoi nadkalibernogo konusotsilindricheskogo tela”, Izv. RAN. MZhG, 2007, no. 3, 155–168

[5] Spalart P. R., Allmaras S. R., “A one-equation turbulence model for aerodynamic flows”, La Recherche Aerospatiale, 1994, no. 1, 5–21

[6] Kolgan V. P., “Primenenie printsipa minimalnykh znachenii proizvodnykh k postroeniyu konechno-raznostnykh skhem dlya rascheta razryvnykh reshenii gazovoi dinamiki”, Uchenye zapiski TsAGI, 3:6 (1972), 68–77

[7] Borovoi V. Ya., Techenie gaza i teploobmen v zonakh vzaimodeistviya udarnykh voln s pogranichnym sloem, Mashinostroenie, M., 1983, 144 pp.

[8] Delery Jean, Dussauge Jean-Paul, “Some physical aspects of shock wave/boundary layer interactions”, Shock Waves, 19:6 (2009), 453–468 | DOI

[9] Volkov K. N., Emelyanov V. N., Modelirovanie krupnykh vikhrei v raschetakh turbulentnykh techenii, FIZMATLIT, M., 2008, 368 pp.

[10] Petrov K. P., Aerodinamika tel prosteishikh form, Nauchnoe izdanie, Faktorial, M., 1998, 432 pp.

[11] Breuer M., Jovicic N., Mazaev K., “Comparison of DES, RANS and LES for the separated flow around a flat plate at high incidence”, Int. J. Numer. Meth. Fluids, 41 (2003), 357–388 | DOI | Zbl