The kinetic model of the gas radiational conductivity
Matematičeskoe modelirovanie, Tome 23 (2011) no. 4, pp. 41-56.

Voir la notice de l'article provenant de la source Math-Net.Ru

The kinetic equation for low energy electrons, which appears in the gas under the impact of ionizing radiation, is considered. The elastic, inelastic and ionization collisions between electrons and gas molecules and the interaction with the external electric field are taken into account in the kinetic equation. The process of the conduction current is considered. Small parameter is re-vealed which is the ratio of energy, accumulated by the electron between collisions and thermal energy. The approximate solution of the kinetic equation for electron's concentration and flux is obtained. The result is the quadrature formulae for electronic conductivity calculation in the model of radiation electromagnetic field.
Keywords: kinetic equation, radiational conductivity, model collision integral.
@article{MM_2011_23_4_a2,
     author = {M. B. Markov and S. V. Parot'kin},
     title = {The kinetic model of the gas radiational conductivity},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {41--56},
     publisher = {mathdoc},
     volume = {23},
     number = {4},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2011_23_4_a2/}
}
TY  - JOUR
AU  - M. B. Markov
AU  - S. V. Parot'kin
TI  - The kinetic model of the gas radiational conductivity
JO  - Matematičeskoe modelirovanie
PY  - 2011
SP  - 41
EP  - 56
VL  - 23
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2011_23_4_a2/
LA  - ru
ID  - MM_2011_23_4_a2
ER  - 
%0 Journal Article
%A M. B. Markov
%A S. V. Parot'kin
%T The kinetic model of the gas radiational conductivity
%J Matematičeskoe modelirovanie
%D 2011
%P 41-56
%V 23
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2011_23_4_a2/
%G ru
%F MM_2011_23_4_a2
M. B. Markov; S. V. Parot'kin. The kinetic model of the gas radiational conductivity. Matematičeskoe modelirovanie, Tome 23 (2011) no. 4, pp. 41-56. http://geodesic.mathdoc.fr/item/MM_2011_23_4_a2/

[1] Fedorov V. K., Sergeev N. P., Kondrashin A. A., Kontrol i ispytaniya v proektirovanii i proizvodstve radioelektronnykh sredstv, Tekhnosfera, M., 2005

[2] Chumakov A. I., Deistvie kosmicheskoi radiatsii na integralnye skhemy, Radio i svyaz, M., 2004

[3] Zhukovskii M. E., Markov M. B., “Matematicheskoe modelirovanie elektromagnitnykh polei radiatsionnogo proiskhozhdeniya”, Entsiklopediya nizkotemperaturnoi plazmy. Seriya B, v. VII-1, chast 2, 628–652

[4] Markov M. B., Zhukovskiy M. E., “Modeling the radiative electromagnetic field”, International Journal of Computing Science and Mathematics, 2:1/2 (2008), 110–131 | DOI | MR | Zbl

[5] Andrianov A. N., Berezin A. V., Vorontsov A. S., Efimkin K. N., Markov M. B., “Modelirovanie elektromagnitnykh polei radiatsionnogo proiskhozhdeniya na mnogoprotsessornykh vychislitelnykh sistemakh”, Matematicheskoe modelirovanie, 20:3 (2008), 98–114 | Zbl

[6] Markov M. B., Parotkin S. V., Sysenko A. V., “Metod chastits dlya modeli elektromagnitnogo polya potoka elektronov v gaze”, Matematicheskoe modelirovanie, 20:5 (2008), 35–54 | MR | Zbl

[7] National Institute of Standarts and Technology, Ofitsialnyi sait http://www.nist.gov/index.html

[8] Longmaier K., Fizika plazmy. Elementarnyi kurs, Atomizdat, M., 1966

[9] Khaksli L., Krompton R., Diffuziya i dreif elektronov v gazakh, Mir, M., 1977

[10] Itikawa Y., “Cross sections for collisions of electrons and photons with nitrogen molecules”, J. Phys. Chem. Ref. Data, 15:3 (1986), 985 | DOI

[11] Itikawa Y., “Cross sections for collisions of electrons and photons with oxygen molecules”, J. Phys. Chem. Ref. Data, 18:1 (1989), 23 | DOI

[12] Trajmar S., “Electron scattering by molecules. II. Experimental methods and data”, Phys. Rep., 97 (1983), 219 | DOI

[13] Schulz G. J., “Vibrational excitation of $\mathrm{N_2CO}$, and $\mathrm H_2$ by electron impact”, Phys. Rev. A, 135:4 (1964), 988 | MR

[14] Schulz G. J., “Vibrational Excitation of $\mathrm{CO_2}$ by Electron Impact”, Phys. Rev. Lett., 21 (1968), 1031 | DOI

[15] Schulz G. J., “Resonances in Electron Impact on Atoms”, Rev. Mod. Phys., 45:3 (1973), 378 | DOI | MR

[16] Spence D. J., “Measurement of Total Inelastic Cross Sections for Electron Impact in $\mathrm N_2$ and $\mathrm{CO_2}$”, Chem. Phys., 57 (1972), 5516

[17] Biberman L. M., Vorobëv V. S., Yakubov I. T., Kinetika neravnovesnoi nizkotemperaturnoi plazmy, M., 1982

[18] Cartwright D. C., “Electron impact excitation of the electronic states of $\mathrm N_2$. II. Integral cross sections at incident energies from 10 to 50 eV”, Phys. Rev. A, 16 (1977), 1041 | DOI

[19] Chutjian A., “Electron impact excitation of he electronic states of $\mathrm N_2$. III. Transitions in the 12.5–14.2-eV energy-loss region at incident energies of 40 and 60 eV”, Phys. Rev A, 16 (1977), 1052 | DOI

[20] Kochetov I. V. i dr., “Skorosti protsessov, initsiiruemykh elektronnym udarom v neravnovesnoi plazme. Molekulyarnyi azot i dvuokis ugleroda”, Plazmokhimicheskie protsessy, M., 1979, 4–43

[21] Rapp D., “Cross Sections for Dissociative Ionization of Molecules by Electron Impact”, The Journal of Chemical Physics, 42:12, 4081 | DOI

[22] Kim Yong-Ki, “Binary-encounter-dipole model for electron-impact ionization”, Phys. Rev. A, 50:5 (1994), 3954 | DOI

[23] Kim Yong-Ki, “Extension of the Binary-encounter-dipole model to relativistic incident electrons”, Phys. Rev. A, 62:5 (2000), 052710 | DOI

[24] Ginzburg V. L., Gurevich A. V., “Nelineinye yavleniya v plazme, nakhodyascheisya v peremennom elektromagnitnom pole”, UFN, 70:2 (1960), 201 | MR | Zbl

[25] Kubo R., Statisticheskaya mekhanika, Mir, M., 1967

[26] Messi G., Barkhop E., Elektronnye i ionnye stolknoveniya, M., 1958

[27] Aleksandrov N. L., Son E. E., “Energeticheskoe raspredelenie i kineticheskie koeffitsienty elektronov v gazakh v elektricheskom pole”, Khimiya plazmy, 5, Atomizdat, M., 1978, 35